首页> 外文期刊>Journal of Energy Storage >Influence of PCM thermal conductivity and HTF velocity during solidification of PCM through the free cooling concept - A parametric study
【24h】

Influence of PCM thermal conductivity and HTF velocity during solidification of PCM through the free cooling concept - A parametric study

机译:自由冷却概念对PCM凝固过程中PCM导热系数和HTF速度的影响-参数研究

获取原文
获取原文并翻译 | 示例
       

摘要

The thermal performance of a latent heat thermal energy storage (LHTES) system can be enhanced by incorporation of fins, metal matrices, lessing rings in the phase change material (PCM) encapsulation and by dispersion of high conducive nanomaterials in the PCM itself. Similarly, to increase the heat transfer to PCM, the surface convective heat transfer coefficient ('h') can be enhanced by increasing the heat transfer fluid (HTF) velocity ('u'). However, it is important to know how much increase in PCM thermal conductivity ('k') and 'h' will be beneficial during the charging of PCM under real-time ambient conditions and when will we reach the margin of diminishing returns. Understanding these are the motivation of the present work which includes the parametric study of the impact of 'k' & 'u' on the charging of PCM (RT28HC) through free cooling concept under different operating conditions (two different HTF inlet temperature). The numerical results are validated using the experimental data and they both show good agreement with each other. The major inferences from the results are, i) increasing the PCM thermal conductivity reduces the charging duration of the LHTES system for both lower and higher HTF velocity (1 m/s and 8 m/s). However, reduction in charging duration while increasing 'k' is higher when the HTF inlet temperature is lower, ii) increasing the HTF velocity is beneficial only when the inlet HTF temperature is higher. For the case of lower HTF inlet temperature, the effect of increasing the HTF velocity is suppressed by the higher temperature driving potential between the HTF inlet temperature and the PCM phase change temperature. It is inferred from the parametric study that, among the three parameters considered (PCM thermal conductivity, HTF velocity, and HTF inlet temperature), HTF inlet temperature has the most influence on the charging of the PCM, followed by the PCM thermal conductivity and HTF velocity.
机译:可以通过在相变材料(PCM)封装中并入散热片,金属基体,较小的环,以及通过在PCM本身中分散高导电性纳米材料,来提高潜热热能存储(LHTES)系统的热性能。类似地,为了增加到PCM的热传递,可以通过增加热传递流体(HTF)速度(u)来提高表面对流热传递系数(h)。但是,重要的是要知道在实时环境条件下对PCM充电期间,PCM热导率('k')和'h'的多少增加将是有益的,何时才能达到收益递减的余地。了解这些是当前工作的动机,其中包括在不同的操作条件(两个不同的HTF入口温度)下通过自然冷却概念对“ k”和“ u”对PCM(RT28HC)充电的影响进行参数研究。使用实验数据验证了数值结果,并且两者都显示出良好的一致性。结果的主要推论是:i)增加PCM热导率可降低LHTES系统在较低和较高HTF速度(1 m / s和8 m / s)下的充电时间。但是,当HTF入口温度较低时,增加“ k”时的充电持续时间减少较高; ii)仅当入口HTF温度较高时,增加HTF速度才是有益的。对于较低的HTF入口温度,HTF入口温度和PCM相变温度之间的较高温度驱动电位会抑制HTF速度增加的影响。从参数研究中可以得出结论,在考虑的三个参数(PCM热导率,HTF速度和HTF入口温度)中,HTF入口温度对PCM的充电影响最大,其次是PCM导热率和HTF速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号