...
首页> 外文期刊>Journal of Energy Engineering >Transport Model for Gas and Water in Nanopores of Shale Gas Reservoirs
【24h】

Transport Model for Gas and Water in Nanopores of Shale Gas Reservoirs

机译:纳米孔纳米孔的天然气和水运输模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Because of the many nanoscale pores in shale gas reservoirs (SGRs), the fluid transport mechanisms in shale are complex. Also, previous research has shown that there exists water in the shale plays. Hence, two-phase gas-water transport model construction becomes very important so as to increase accuracy in numerical simulation work. However, most of the current study is still focused on single-phase gas transport. In this paper, based on the second slip model coupled with the fluid single-pipe flow equation, the Knudsen and surface diffusions, and combined with the fractal theory, the relative permeability model for gas-water in shale was constructed. The model reliability was proven by using the available two-phase gas-water relative permeability data. A sensitivity analysis has been carried out based on the proposed model. The results show that with the pressure decreasing, the relative permeability of gas increases. The increase of the pore size distribution fractal dimensions (D-f) and fractal dimension (D-T) caused the gas relative permeability (K-rg) to increase. The K-rg increases with the increase of D-f and D-T. The influence of the viscous slip flow, Knudsen diffusion, and surface diffusion are trade-offs, which are mainly controlled by water saturation (S-W) and pressure (P). The K-rg is extremely sensitive when P 1 MPa. Under low pressure and low water saturation, the effect of viscous slip flow is secondary. And its contribution increases gradually and becomes the main role with the increase of water saturation or pressure. The effect of the Knudsen diffusion is negligible when P 1 MPa and the water saturation S-W 40%. However, it cannot be ignored under other conditions. The influence of surface diffusion reached 21.64%-72.78% when P 1 MPa and S-W 10%. A surface diffusion contribution of less than 4.25% was obtained when P 1 MPa and S-W 70%. (C) 2021 American Society of Civil Engineers.
机译:由于页岩气藏(SGRS)中的许多纳米级孔,页岩中的流体输送机制是复杂的。此外,以前的研究表明,页岩扮演中存在水。因此,两相气体运输模型结构变得非常重要,以便提高数值模拟工作中的准确性。然而,目前的大部分研究仍然集中在单相气体运输上。本文基于耦合流体单管流方程,腱和表面扩散的第二滑动模型,并与分形理论相结合,构建了页岩中气水的相对磁导率模型。通过使用可用的两相气体水 - 水相对渗透性数据证明了模型可靠性。基于所提出的模型进行了灵敏度分析。结果表明,随着压力降低,气体的相对渗透性增加。孔径分布分形尺寸(D-F)和分形尺寸(D-T)的增加导致气体相对渗透率(K-RG)增加。随着D-F和D-T的增加,K-RG增加。粘性滑动流动,knudsen扩散和表面扩散的影响是折衷,主要由水饱和度(S-W)和压力(P)控制。当P& k-rg非常敏感。 1 MPa。在低压和低水饱和度下,粘性滑动流动的效果是次要的。其贡献逐渐增加,随着水饱和度或压力的增加而变成主要作用。当P&GT时,Chaudsen扩散的效果可忽略不计; 1 MPa和水饱和S-W> 40%。但是,在其他条件下不可忽视。当P& 1时,表面扩散的影响达到21.64%-72.78%。 1 MPa和S-W& 10%。当P&GT时,获得小于4.25%的表面扩散贡献。 1 MPA和S-W> 70%。 (c)2021年美国土木工程师协会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号