...
首页> 外文期刊>Journal of Electronic Packaging >Evaporative Wicking Phenomena on Nanotextured Surfaces
【24h】

Evaporative Wicking Phenomena on Nanotextured Surfaces

机译:纳米纹理表面上的蒸发芯吸现象

获取原文
获取原文并翻译 | 示例

摘要

As modern electronics become miniaturized with high power, thermal management for electronics devices has become significant. This motivates the implementation of new cooling solutions to dissipate high-heat levels from high-performance electronics. Evaporative cooling is one of the most promising approaches for meeting these future thermal demands. Thin-film evaporation promotes heat dissipation through the phase change process with minimal conduction resistance. In this process, it is important to design surface structures and corresponding surface properties that can minimize meniscus thickness, increase liquid-vapor interfacial area, and enhance evaporation performances. In this study, we investigate thin-film evaporation by employing nanotextured copper substrates for varying thermal conditions. The liquid spreading on the nanotextured surfaces is visualized using a high-speed imaging technique to quantify evaporative heat transfer for various surfaces. The permeability is calculated using an enhanced wicking model to estimate the evaporation effect combined with the mass measurements. Then, infrared (IR) thermography is employed to examine two-dimensional temporal temperature profiles of the samples during the evaporative wicking with a given heat flux. The combination of optical time-lapse images, evaporation rate measurements, and temperature profiles will provide a comprehensive understanding of evaporation performances using textured surfaces.
机译:随着现代电子产品以高功率小型化,电子设备的热管理变得越来越重要。这激励了新的冷却解决方案的实施,以消除高性能电子设备中的高热量。蒸发冷却是满足这些未来热需求的最有前途的方法之一。薄膜蒸发通过相变过程促进了散热,并且传导电阻最小。在此过程中,重要的是设计表面结构和相应的表面特性,以最小化弯月面厚度,增加液汽界面面积并增强蒸发性能。在这项研究中,我们通过采用纳米纹理化的铜基板来改变热条件来研究薄膜蒸发。使用高速成像技术可视化散布在纳米纹理表面上的液体,以量化各种表面的蒸发热传递。使用增强的芯吸模型计算渗透率,以结合质量测量值估算蒸发效果。然后,使用红外(IR)热成像技术检查在蒸发芯吸作用下具有给定热通量的样品的二维瞬时温度曲线。光学延时图像,蒸发速率测量和温度曲线的组合将提供对使用带纹理表面的蒸发性能的全面了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号