首页> 外文期刊>Journal of dairy science >A mechanistic model of small intestinal starch digestion and glucose uptake in the cow
【24h】

A mechanistic model of small intestinal starch digestion and glucose uptake in the cow

机译:奶牛小肠淀粉消化和葡萄糖摄取的机制模型

获取原文
获取原文并翻译 | 示例
       

摘要

The high contribution of postruminal starch digestion (up to 50%) to total-tract starch digestion on energy-dense, starch-rich diets demands that limitations to small intestinal starch digestion be identified. A mechanistic model of the small intestine was described and evaluated with regard to its ability to simulate observations from abomasal carbohydrate infusions in the dairy cow. The 7 state variables represent starch, oligosaccharide, glucose, and pancreatic amylase in the intestinal lumen, oligosaccharide and glucose in the unstirred water layer at the intestinal wall, and intracellular glucose of the enterocyte. Enzymatic hydrolysis of starch was modeled as a 2-stage process involving the activity of pancreatic amylase in the lumen and of oligosaccharidase at the brush border of the enterocyte confined within the unstirred water layer. The Na~+-dependent glucose transport into the enterocyte was represented along with a facilitative glucose transporter 2 transport system on the basolateral membrane. The small intestine is subdivided into 3 main sections, representing the duodenum, jejunum, and ileum for parameterization. Further subsections are defined between which continual digesta flow is represented. The model predicted nonstructural carbohydrate disappearance in the small intestine for cattle unadapted to duodenal infusion with a coefficient of determination of 0.92 and a root mean square prediction error of 25.4%. Simulation of glucose disappearance for mature Holstein heifers adapted to various levels of duodenal glucose infusion yielded a coefficient of determination of 0.81 and a root mean square prediction error of 38.6%. Analysis of model behavior identified limitations to the efficiency of small intestinal starch digestion with high levels of duodenal starch flow. Limitations to individual processes, particularly starch digestion in the proximal section of the intestine, can create asynchrony between starch hydrolysis and glucose uptake capacity.
机译:在能量密集,富含淀粉的饮食中,瘤胃后淀粉消化对全道淀粉消化的高度贡献(高达50%)要求确定对小肠淀粉消化的限制。描述并评估了小肠的机械模型,该模型可模拟奶牛中从阿玛玛氏液中注入碳水化合物的观察结果。这7个状态变量表示肠腔中的淀粉,低聚糖,葡萄糖和胰淀粉酶,肠壁未搅拌水层中的寡糖和葡萄糖,以及肠细胞的细胞内葡萄糖。淀粉的酶水解被建模为一个两阶段过程,涉及管腔中的胰淀粉酶和封闭在未搅拌水层内的肠上皮细胞刷状缘处的寡糖酶的活性。 Na +依赖性葡萄糖向肠细胞的转运与基底外侧膜上的促进葡萄糖转运蛋白2转运系统一起表现。小肠分为三个主要部分,分别代表十二指肠,空肠和回肠以进行参数设置。定义了进一步的小节,在这些小节之间代表了连续的消化流。该模型预测了不适合十二指肠输注的牛小肠中非结构性碳水化合物的消失,测定系数为0.92,均方根预测误差为25.4%。模拟适应不同水平十二指肠葡萄糖输注的成熟荷斯坦小母牛的葡萄糖消失,得出确定系数为0.81,均方根预测误差为38.6%。对模型行为的分析确定了十二指肠淀粉流量高时小肠淀粉消化效率的局限性。单个过程的局限性,特别是肠道近端部分的淀粉消化,会在淀粉水解和葡萄糖吸收能力之间产生不同步。

著录项

  • 来源
    《Journal of dairy science》 |2017年第6期|4650-4670|共21页
  • 作者单位

    Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;

    Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;

    Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada,Animal Nutrition Group, Wageningen University & Research, 6708 WD, Wageningen, the Netherlands;

    School of Agriculture, Policy & Development, University of Reading, Reading, RG6 6AR, United Kingdom;

    Wageningen UR Livestock Research, 6708 WD, Wageningen, the Netherlands;

    Department of Dairy Science, Virginia Tech, 3310 Litton Reaves, Blacksburg 24061;

    Animal Nutrition Group, Wageningen University & Research, 6708 WD, Wageningen, the Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    starch digestion; small intestine; glucose uptake; mechanistic model;

    机译:淀粉消化小肠;葡萄糖摄取机械模型;
  • 入库时间 2022-08-17 23:22:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号