...
首页> 外文期刊>Journal of Crystal Growth >Crystal growth in porous materials—Ⅱ: Influence of crystal size on the crystallization pressure
【24h】

Crystal growth in porous materials—Ⅱ: Influence of crystal size on the crystallization pressure

机译:多孔材料中的晶体生长—Ⅱ:晶体尺寸对结晶压力的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A thermodynamically consistent equation for the calculation of the pressure generated during crystal growth in porous materials is provided. The treatment makes use of an equation derived previously (paper Ⅰ of this series) which is based on the chemical potentials of loaded and unloaded surfaces of confined crystals in porous materials. The influence of the crystal-solution interface on the chemical potentials is analyzed and a more general equation is derived that can be used to calculate the crystallization pressure considering both the degree of supersaturation of the solution and the effect of the curvature of the crystal-liquid interface. The present treatment is compared to other equations available in the literature and the different approaches are discussed in detail. It is shown that, for a given concentration of a pore solution, the crystallization pressure increases with crystal size. The equation is also applied to calculate equilibrium growth pressures assuming idealized pore geometries such as spherical and cylindrical pores with small entrances. It is shown that existing equations, e.g. Everett's equation [Trans. Faraday Soc. 57 (1961) 1541] can be derived as a special case from the more general treatment provided in this paper. The growth pressure of a crystal in a large pore increases with decreasing size of the pore entrance. Finally, a brief discussion on the particular problems of irregular pore geometries and highly anisotropic surface free energies of salts in porous building materials is provided.
机译:提供了用于计算多孔材料中晶体生长过程中产生的压力的热力学一致性方程。该处理利用先前导出的方程式(本系列论文Ⅰ),该方程式基于多孔材料中受限晶体的加载和未加载表面的化学势。分析了晶体-溶液界面对化学势的影响,并导出了一个更通用的方程,该方程可同时考虑溶液的过饱和度和晶体-液体曲率的影响来计算结晶压力。接口。将本处理与文献中可用的其他方程进行比较,并详细讨论了不同的方法。结果表明,对于一定浓度的孔溶液,结晶压力随晶体尺寸的增加而增加。假设理想的孔隙几何形状(例如具有小入口的球形和圆柱形孔隙),该方程式也可用于计算平衡生长压力。证明了现有的方程,例如埃弗里特方程[Trans。法拉第社会57(1961)1541]可以作为特殊情况从本文提供的更一般的处理中得出。大孔中晶体的生长压力随着孔入口尺寸的减小而增加。最后,简要讨论了多孔建筑材料中不规则的孔几何形状和盐的高度各向异性表面自由能的特殊问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号