首页> 外文期刊>Journal of Contaminant Hydrology >Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction
【24h】

Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction

机译:非水相液体(NAPL)源区构造对强层非均质多孔介质中土壤蒸气提取过程中质量去除机理的影响

获取原文
获取原文并翻译 | 示例
           

摘要

An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impacts of water and NAPL saturation distribution, NAPL-type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at later time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.
机译:修改了现有的多相流模拟器,以便确定四种机制对土壤蒸汽提取(SVE)过程中强分层非均质渗流区中NAPL物质去除的影响:a)NAPL流量,b)低渗透性区的扩散和弥散, c)从沉积物颗粒中缓慢解吸,和d)捕获的NAPL的限速溶出。评估了水和NAPL饱和度分布,NAPL类型(即自由,残留或捕获)分布以及渗透率场的空间异质性对这些机理的影响。考虑了两种不同的初始源区域体系结构(一种具有未捕获的NAPL),这些体系结构用于评估七个不同的SVE场景。对于所有运行,绕过气流的低渗透率区域的缓慢扩散是导致以后SVE有效性降低的主要因素。由于气相相对渗透率的降低,在高含水饱和度下,该效果更为显着。横向色散有助于在两种源区结构中从低渗透层中快速去除NAPL物质,但纵向色散不会影响整体质量去除时间。沉积物颗粒的缓慢解吸和被捕集的NAPL的限速传质都仅对去除时间有轻微的影响。但是,从捕获的NAPL传质确实会影响稍后的质量去除以及NAPL分布。从低渗透区到高渗透区的NAPL流动有助于从低渗透层更快地去除物质,当消除水的渗透时,这种作用会增强。这些模拟表明,如果捕集的NAPL存在于非均质的多孔介质中,则可以通过将气体直接输送到捕集的NAPL的区域并降低水含量来改善传质,这会增加气体的相对渗透率并将捕集的NAPL变为游离的NAPL。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号