首页> 外文期刊>Journal of Contaminant Hydrology >Combined physical and chemical nonequilibrium transport model: Analytical solution, moments, and application to colloids
【24h】

Combined physical and chemical nonequilibrium transport model: Analytical solution, moments, and application to colloids

机译:物理和化学非平衡组合运移模型:分析溶液,力矩及其在胶体中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

The transport of solutes and colloids in porous media is influenced by a variety of physical and chemical nonequilibrium processes. A combined physical-chemical nonequilibrium (PCNE) model was therefore used to describe general mass transport. The model partitions the pore space into "mobile" and "immobile" flow regions with first-order mass transfer between these two regions (i.e, "physical" nonequilibrium or PNE). Partitioning between the aqueous and solid phases can either proceed as an equilibrium or a first-order process (i.e, "chemical" nonequilibrium or CNE) for both the mobile and immobile regions. An analytical solution for the PCNE model is obtained using iterated Laplace transforms. This solution complements earlier semi-analytical and numerical approaches to model solute transport with the PCNE model. The impact of selected model parameters on solute breakthrough curves is illustrated. As is well known, nonequilibrium results in earlier solute breakthrough with increased tailing. The PCNE model allows greater flexibility to describe this trend; for example, a closer resemblance between solute input and effluent pulse. Expressions for moments and transfer functions are presented to facilitate the analytical use of the PCNE model. Contours of mean breakthrough time, variance, and spread of the colloid breakthrough curves as a function of PNE and CNE parameters demonstrate the utility of a model that accounts for both physical and chemical nonequilibrium processes. The model is applied to describe representative colloid breakthrough curves in Ottawa sands reported by Bradford et al. (2002). An equilibrium model provided a good description of breakthrough curves for the bromide tracer but could not adequately describe the colloid data. A considerably better description was provide by the simple CNE model but the best description, especially for the larger 3.2-um colloids, was provided by the PCNE model.
机译:溶质和胶体在多孔介质中的运输受到多种物理和化学非平衡过程的影响。因此,使用组合的物理化学非平衡(PCNE)模型来描述一般质量传输。该模型将孔隙空间划分为“流动”和“不流动”的流动区域,并在这两个区域之间进行一级质量传递(即“物理”非平衡或PNE)。在水相和固相之间的分配可以对于流动区域和不流动区域都以平衡或一级过程(即“化学”非平衡或CNE)进行。使用迭代的拉普拉斯变换获得PCNE模型的解析解。该解决方案是对早期使用PCNE模型进行溶质运移建模的半分析和数值方法的补充。说明了所选模型参数对溶质突破曲线的影响。众所周知,非平衡导致溶质越早越早出现拖尾现象。 PCNE模型提供了更大的灵活性来描述这种趋势。例如,溶质输入和流出脉冲之间的相似度更高。给出了力矩和传递函数的表达式,以方便PCNE模型的分析使用。平均穿透时间,方差和胶体穿透曲线的扩散随PNE和CNE参数变化的轮廓表明,该模型的实用性可解决物理和化学非平衡过程。该模型用于描述Bradford等报道的渥太华砂岩中代表性的胶体穿透曲线。 (2002)。平衡模型可以很好地描述溴化物示踪剂的突破曲线,但不能充分描述胶体数据。简单的CNE模型提供了更好的描述,但PCNE模型提供了最好的描述,尤其是对于较大的3.2um胶体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号