...
首页> 外文期刊>Journal of Contaminant Hydrology >Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone
【24h】

Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

机译:用于减轻不饱和区中氯化溶剂蒸气的原位水平渗透反应性屏障(HPRB)设计的分析模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a second-order reaction rate constant. Furthermore, the model accounts for the HPRB lifetime as a function of the oxidant consumption by reaction with upward vapors and its progressive dissolution and leaching by infiltrating water. Simulation results by this new model closely replicate previous lab-scale tests carried out on trichloroethylene (TCE) using a HPRB containing a mixture of potassium permanganate, water and sand. In view of field applications, design criteria, in terms of the minimum HPRB thickness required to attenuate vapors at acceptable risk-based levels and the expected HPRB lifetime, are determined from site-specific conditions such as vapor source concentration, water infiltration rate and HPRB mixture. The results clearly show the field-scale feasibility of this alternative vapor mitigation system for the treatment of chlorinated solvents. Depending on the oxidation kinetic of the target contaminant, a 1 m thick HPRB can ensure an attenuation of vapor concentrations of orders of magnitude up to 20 years, even for vapor source concentrations up to 10 g/m(3). A demonstrative application for representative contaminated site conditions also shows the feasibility of this mitigation system from an economical point of view with capital costs potentially somewhat lower than those of other remediation options, such as soil vapor extraction systems. Overall, based on the experimental and theoretical evaluation thus far, field-scale tests are warranted to verify the potential and cost-effectiveness of HPRBs for vapor mitigation control under various conditions of application. (C) 2017 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们介绍了一种一维分析解决方案,该解决方案可用于设计水平可渗透反应性屏障(HPRB),作为受氯溶剂污染的场所的蒸汽缓解系统。所开发的模型结合了具有二阶反应速率常数的瞬态扩散为主的传输。此外,该模型将HPRB寿命作为氧化剂消耗量的函数,该氧化剂消耗量是通过与向上蒸气反应以及氧化剂的逐步溶解和渗透水浸出而引起的。这个新模型的模拟结果与使用高锰酸钾,水和沙子的混合物的HPRB在三氯乙烯(TCE)上进行的实验室规模测试非常相似。考虑到现场应用,根据特定现场条件(例如蒸汽源浓度,水渗透率和HPRB)确定设计标准,以在可接受的基于风险的水平上衰减蒸气所需的最小HPRB厚度和预期的HPRB寿命来确定混合物。结果清楚地表明了这种替代性的蒸汽缓解系统在处理氯化溶剂方面的现场可行性。根据目标污染物的氧化动力学,厚1 m的HPRB可以确保长达20年的量级蒸汽浓度衰减,即使对于高达10 g / m的蒸汽源浓度也是如此(3)。从经济角度来看,代表性污染场地条件的示范性应用也表明了该减灾系统的可行性,其资金成本可能比其他补救方案(例如土壤蒸汽提取系统)的成本低一些。总体而言,基于目前为止的实验和理论评估,必须进行现场规模的测试,以验证在各种应用条件下,HPRB在控制蒸汽中的潜力和成本效益。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号