首页> 外文期刊>Journal of Computing and Information Science in Engineering >Optimizing Topology and Gradient Orthotropic Material Properties Under Multiple Loads
【24h】

Optimizing Topology and Gradient Orthotropic Material Properties Under Multiple Loads

机译:在多重载荷下优化拓扑和梯度正交材料特性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The goal of this research is to optimize an object's macroscopic topology and localized gradient material properties (GMPs) subject to multiple loading conditions simultaneously. The gradient material of each macroscopic cell is modeled as an orthotropic material where the elastic moduli in two local orthogonal directions we call x and y can change. Furthermore, the direction of the local coordinate system can be rotated to align with the loading conditions on each cell. This orthotropic material is similar to a fiber-reinforced material where the number of fibers in the local x and y-directions can change for each cell, and the directions can as well be rotated. Repeating cellular unit cells, which form a mesostructure, can also achieve these customized orthotropic material properties. Homogenization theory allows calculating the macroscopic averaged bulk properties of these cellular materials. By combining topology optimization with gradient material optimization and fiber orientation optimization, the proposed algorithm significantly decreases the objective, which is to minimize the strain energy of the object subject to multiple loading conditions. Additive manufacturing (AM) techniques enable the fabrication of these designs by selectively placing reinforcing fibers or by printing different mesostructures in each region of the design. This work shows a comparison of simple topology optimization, topology optimization with isotropic gradient materials, and topology optimization with orthotropic gradient materials. Finally, a trade-off experiment shows how different optimization parameters, which affect the range of gradient materials used in the design, have an impact on the final objective value of the design. The algorithm presented in this paper offers new insight into how to best take advantage of new AM capabilities to print objects with gradient customizable material properties.
机译:该研究的目标是优化对象的宏观拓扑和局部梯度材料特性(GMP)同时经过多个负载条件。每个宏观细胞的梯度材料被建模为正交材料,其中两个局部正交方向的弹性模量我们呼叫X和Y可以改变。此外,局部坐标系的方向可以旋转以与每个电池上的负载条件对齐。这种正交材料类似于纤维增强材料,其中局部x和y方向上的纤维数可以改变每个电池,并且也可以旋转方向。重复形成腹腔结构的细胞单元细胞,也可以实现这些定制的正交材料性质。均化理论允许计算这些细胞材料的宏观平均堆积性质。通过将拓扑优化与梯度材料优化和纤维取向优化相结合,所提出的算法显着降低了目标,这是最小化受多个负载条件的物体的应变能量。添加剂制造(AM)技术通过选择性地放置增强纤维或通过在设计的每个区域中印刷不同的腹腔结构来制造这些设计。这项工作显示了简单拓扑优化,具有各向同性梯度材料的拓扑优化的比较,以及具有正交梯度材料的拓扑优化。最后,折衷实验表明了影响设计中使用的梯度材料范围的不同优化参数如何影响设计的最终目标值。本文呈现的算法提供了新的洞察,以便如何最好地利用新的AM功能来打印具有渐变可自定义材料属性的对象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号