首页> 外文期刊>Journal of Computational Neuroscience >Feedback Inhibition and Throughput Properties of an Integrate-and-Fire-or-Burst Network Model of Retinogeniculate Transmission
【24h】

Feedback Inhibition and Throughput Properties of an Integrate-and-Fire-or-Burst Network Model of Retinogeniculate Transmission

机译:视黄质传播的集成与发射或爆发网络模型的反馈抑制和吞吐量特性

获取原文
获取原文并翻译 | 示例
           

摘要

Computational modeling has played an important role in the dissection of the biophysical basis of rhythmic oscillations in thalamus that are associated with sleep and certain forms of epilepsy. In contrast, the dynamic filter properties of thalamic relay nuclei during states of arousal are not well understood. Here we present a modeling and simulation study of the throughput properties of the visually driven dorsal lateral geniculate nucleus (dLGN) in the presence of feedback inhibition from the perigeniculate nucleus (PGN). We employ thalamocortical (TC) and thalamic reticular (RE) versions of a minimal integrate-and-fire-or-burst type model and a one-dimensional, two-layered network architecture. Potassium leakage conductances control the neuromodulatory state of the network and eliminate rhythmic bursting in the presence of spontaneous input (i.e., wake up the network). The aroused dLGN/PGN network model is subsequently stimulated by spatially homogeneous spontaneous retinal input or spatio-temporally patterned input consistent with the activity of X-type retinal ganglion cells during full-field or drifting grating visual stimulation. The throughput properties of this visually-driven dLGN/PGN network model are characterized and quantified as a function of stimulus parameters such as contrast, temporal frequency, and spatial frequency. During low-frequency oscillatory full-field stimulation, feedback inhibition from RE neurons often leads to TC neuron burst responses, while at high frequency tonic responses dominate. Depending on the average rate of stimulation, contrast level, and temporal frequency of modulation, the TC and RE cell bursts may or may not be phase-locked to the visual stimulus. During drifting-grating stimulation, phase-locked bursts often occur for sufficiently high contrast so long as the spatial period of the grating is not small compared to the synaptic footprint length, i.e., the spatial scale of the network connectivity.
机译:计算模型在解剖与睡眠和某些形式的癫痫相关的丘脑节律性振荡的生物物理基础中发挥了重要作用。相反,在唤醒状态期间丘脑中继核的动态过滤特性尚未得到很好的理解。在这里,我们提出了在视觉上驱动背外侧膝状核(dLGN)的通量特性的建模和仿真研究,其中存在来自膝状核(PGN)的反馈抑制。我们采用最小整合,发射或爆发式模型和一维两层网络架构的丘脑皮质(TC)和丘脑网状(RE)版本。钾泄漏电导控制网络的神经调节状态,并消除自发输入(即唤醒网络)时的有节奏的爆发。随后,与全视野或漂移光栅视觉刺激过程中X型视网膜神经节细胞活动一致的空间均匀自发性视网膜输入或时空模式输入刺激了dLGN / PGN网络模型。该视觉驱动的dLGN / PGN网络模型的吞吐量属性根据刺激参数(例如对比度,时间频率和空间频率)的函数进行表征和量化。在低频振荡全场刺激过程中,来自RE神经元的反馈抑制通常会导致TC神经元爆发反应,而在高频声调反应中则占主导。根据刺激的平均速率,对比度水平和调制的时间频率,TC和RE细胞爆发可能会或可能不会与视觉刺激相锁定。在漂移-光栅刺激期间,通常会发生锁相脉冲,以获得足够高的对比度,只要光栅的空间周期与突触足迹长度(即网络连通性的空间尺度)相比不小即可。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号