...
首页> 外文期刊>Journal of Computational Neuroscience >Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics
【24h】

Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics

机译:线虫起伏运动的系统级电路模型:数学建模和分子遗传学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To establish the relationship between loco-motory behavior and dynamics of neural circuits in the nematode C. elegans we combined molecular and theoretical approaches. In particular, we quantitatively analyzed the motion of C. elegans with defective synap-tic GABA and acetylcholine transmission, defective muscle calcium signaling, and defective muscles and cuticle structures, and compared the data with our systems level circuit model. The major experimental findings are: (1) anterior-to-posterior gradients of body bending flex for almost all strains both for forward and backward motion, and for neuronal mutants, also analogous weak gradients of undulatory frequency, (2) existence of some form of neuromuscular (stretch receptor) feedback, (3) invariance of neuromuscular wavelength, (4) biphasic dependence of frequency on synaptic signaling, and (5) decrease of frequency with increase of the muscle time constant. Based on (1) we hypothesize that the Central Pattern Generator (CPG) is located in the head both for forward and backward motion. Points (1) and (2) are the starting assumptions for our theoretical model, whose dynamical patterns are qualitatively insensitive to the details of the CPG design if stretch receptor feedback is sufficiently strong and slow. The model reveals that stretch receptor coupling in the body wall is critical for generation of the neuromuscular wave. Our model agrees with our behavioral data (3), (4), and (5), and with other pertinent published data, e.g., that frequency is an increasing function of muscle gap-junction coupling.
机译:为了建立线虫线虫运动行为与神经回路动力学之间的关系,我们结合了分子方法和理论方法。特别是,我们定量分析了具有缺陷的突触GABA和乙酰胆碱传递,缺陷的肌肉钙信号传导以及缺陷的肌肉和表皮结构的秀丽隐杆线虫的运动,并将数据与我们的系统级电路模型进行了比较。主要的实验发现是:(1)几乎所有用于向前和向后运动的应变以及对于神经元突变体而言,几乎所有应变的身体弯曲屈曲的从前到后的梯度,以及类似的波动频率的弱梯度,(2)存在某种形式(3)神经肌肉波长的不变性;(4)频率对突触信号传导的双相依赖性;以及(5)频率随着肌肉时间常数的增加而降低。基于(1),我们假设中央模式发生器(CPG)位于头部中以进行向前和向后运动。要点(1)和(2)是我们理论模型的起始假设,如果拉伸受体反馈足够强和很慢,则其动力学模式在质量上对CPG设计的细节不敏感。该模型表明,体壁中的拉伸受体偶联对于神经肌肉波的产生至关重要。我们的模型与我们的行为数据(3),(4)和(5)以及其他相关公开数据一致,例如,频率是肌肉间隙连接耦合的增加函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号