首页> 外文期刊>Journal of Computational Neuroscience >Mechanisms of very fast oscillations in networks of axons coupled by gap junctions
【24h】

Mechanisms of very fast oscillations in networks of axons coupled by gap junctions

机译:间隙连接耦合的轴突网络中非常快速的振荡机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Because electrical coupling among the neurons of the brain is much faster than chemical synaptic coupling, it is natural to hypothesize that gap junctions may play a crucial role in mechanisms underlying very fast oscillations (VFOs), i.e., oscillations at more than 80 Hz. There is now a substantial body of experimental and modeling literature supporting this hypothesis. A series of modeling papers, starting with work by Roger Traub and collaborators, have suggested that VFOs may arise from expanding waves propagating through an "axonal plexus", a large random network of electrically coupled axons. Traub et al. also proposed a cellular automaton (CA) model to study the mechanisms of VFOs in the axonal plexus. In this model, the expanding waves take the appearance of topologically circular "target patterns". Random external stimuli initiate each wave. We therefore call this kind of VFO "externally driven". Using a computational model, we show that an axonal plexus can also exhibit a second, distinctly different kind of VFO in a wide parameter range. These VFOs arise from activity propagating around cycles in the network. Once triggered, they persist without any source of excitation. With idealized, regular connectivity, they take the appearance of spiralrnwaves. We call these VFOs "re-entrant". The behavior of the axonal plexus depends on the reliability with which action potentials propagate from one axon to the next, which, in turn, depends on the somatic membrane potential V_s and the gap junction conductance g_(gj). To study these dependencies, we impose a fixed value of V_s, then study the effects of varying V_s and g_(gj). Not surprisingly, propagation becomes more reliable with rising V_s and g_(gj). Externally driven VFOs occur when V_s and g_(gj) are so high that propagation never fails. For lower V_s or g_(gj), propagation is nearly reliable, but fails in rare circumstances. Surprisingly, the parameter regime where this occurs is fairly large. Even a single propagation failure can trigger re-entrant VFOs in this regime. Lowering V_s and g_(gj) further, one finds a third parameter regime in which propagation is unreliable, and no VFOs arise. We analyze these three parameter regimes by means of computations using model networks adapted from Traub et al., as well as much smaller model networks.
机译:由于大脑神经元之间的电耦合比化学突触耦合要快得多,因此可以自然地假设,间隙连接在超快振荡(VFO)(即超过80 Hz的振荡)的潜在机制中起着至关重要的作用。现在有大量的实验和建模文献支持这一假设。从罗杰·特劳布(Roger Traub)和合作者的工作开始,一系列建模论文表明,VFO可能是由于扩展了通过“轴突丛”(一种电耦合轴突的大型随机网络)传播的波而产生的。 Traub等。还提出了一种细胞自动机(CA)模型来研究轴突神经丛中VFO的机制。在此模型中,扩展波具有拓扑圆形“目标模式”的外观。随机的外部刺激会引发每个波浪。因此,我们称这种VFO为“外部驱动”。使用计算模型,我们表明轴突神经丛也可以在很宽的参数范围内表现出第二种明显不同的VFO。这些VFO来自网络中围绕周期传播的活动。一旦触发,它们将持续存在而没有任何激发源。通过理想的常规连接,它们呈现出螺旋波的外观。我们称这些VFO为“可重入”。轴突神经丛的行为取决于动作电位从一个轴突传播到另一个轴突的可靠性,而可靠性又取决于体膜电位V_s和间隙连接电导g_(gj)。为了研究这些依赖性,我们施加了固定的V_s值,然后研究了变化的V_s和g_(gj)的影响。毫不奇怪,随着V_s和g_(gj)的增加,传播变得更加可靠。当V_s和g_(gj)太高以至于传播永不失败时,就会发生外部驱动的VFO。对于较低的V_s或g_(gj),传播几乎是可靠的,但在极少数情况下会失败。令人惊讶的是,发生这种情况的参数范围很大。在这种情况下,即使是单个传播故障也会触发可重入的VFO。进一步降低V_s和g_(gj),人们发现了第三种参数方案,其中传播是不可靠的,并且没有VFO出现。我们使用Traub等人的模型网络以及更小的模型网络通过计算来分析这三个参数体系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号