...
首页> 外文期刊>Journal of Cleaner Production >Facile synthesis of cobalt-iron layered double hydroxides nanosheets for direct activation of peroxymonosulfate (PMS) during degradation of fluoroquinolones antibiotics
【24h】

Facile synthesis of cobalt-iron layered double hydroxides nanosheets for direct activation of peroxymonosulfate (PMS) during degradation of fluoroquinolones antibiotics

机译:钴 - 铁层状双氢氧化物纳米片的容易合成,用于在氟代喹啉酮抗生素降解过程中直接激活过氧键硫酸盐(PMS)

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

How to efficiently and fast remove the serious perniciousness of the residual antibiotics in water environment is crucial for protecting ecosystem. Herein, we reported the Fenton-like system based on layered double hydroxides (LDHs) nanosheets for direct peroxymonosulfate (PMS) activation efficient for fast removing the typical five fluoroquinolones antibiotics ciprofloxacin (CIP), norfloxacin (NOR), levofloxacin (LEV), enrofloxacin (ENR) and ofloxacin (OFL). A series of CoFe-LDHs nanosheets was one-step fabricated by integrating coprecipitation and in-situ exfoliation method. The as-obtained CoFe-LDHs nanosheets catalysts exhibit thin nanosheets (similar to 3 nm) with high redox properties, abundant oxygen vacancies, appreciable adsorption capacity, remarkable catalytic performance and favorable stability. The variable valent state, cheap, easy-to-obtain and low-toxic Co and Fe elements were used to construct stable LDHs for efficient activation of PMS to degrade quinolone antibiotics. Among them, Co1Fe1-LDHs nanosheets exhibited the best CIP degradation efficiency of 86.9% within 12 min, which is superior to most of previous candidates. The impacts of different reaction parameters, catalyst stability, main reactive oxygen species, the main CIP degradation mechanism and rational degradation pathways were systematically studied. This work offers a feasible strategy to tune the performance of LDHs-based materials in Fenton-like system degradation of antibiotics.
机译:如何有效和快速地消除水环境中残留抗生素的严重知情对保护生态系统至关重要。在此,我们报道了基于层状双氢氧化物(LDHS)纳米片的FENTON样系统用于直接过氧键硫酸盐(PMS)活化效率,用于快速除去典型的五种氟喹啉酮抗生素CIPROFloxacin(CIP),NORFLOXACIN(NOR),左氧氟沙星(LEV),巢氧氟沙星(ENR)和氧氟沙星(OFL)。一系列CoFe-LDHS纳米片是通过整合共沉淀和原位剥离法制造的一步。 AS获得的COFE-LDHS纳米蛋白酶催化剂表现出薄的纳米片(类似于3nm),具有高氧化还原性能,丰富的氧空位,可观的吸附能力,显着的催化性能和有利的稳定性。可变价值的状态,廉价,易于获得和低毒的CO和Fe元素用于构建稳定的LDH,以有效激活PM,降解喹啉抗生素。其中,CO1FE1-LDHS纳米片在12分钟内表现出86.9%的最佳CIP降解效率,其优于以前的大多数候选者。系统地研究了不同反应参数,催化剂稳定性,主要反应性氧,主要CIP降解机理和合理降解途径的影响。这项工作提供了可行的策略来调整基于LDHS的基础材料在抗生素的抗生素的降解中的性能。

著录项

  • 来源
    《Journal of Cleaner Production》 |2021年第10期|127584.1-127584.12|共12页
  • 作者单位

    Sun Yat Sen Univ Sch Environm Sci & Engn Guangdong Prov Key Lab Environm Pollut Control & Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Environm Sci & Engn Guangdong Prov Key Lab Environm Pollut Control & Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Environm Sci & Engn Guangdong Prov Key Lab Environm Pollut Control & Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Environm Sci & Engn Guangdong Prov Key Lab Environm Pollut Control & Guangzhou 510275 Guangdong Peoples R China;

    Dongguan Univ Technol Res Ctr Ecoenvironm Engn Dongguan 523808 Peoples R China;

    Sun Yat Sen Univ Sch Environm Sci & Engn Guangdong Prov Key Lab Environm Pollut Control & Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Environm Sci & Engn Guangdong Prov Key Lab Environm Pollut Control & Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Environm Sci & Engn Guangdong Prov Key Lab Environm Pollut Control & Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Environm Sci & Engn Guangdong Prov Key Lab Environm Pollut Control & Guangzhou 510275 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CoFe-LDHs nanosheets; Peroxymonosulfate; Ciprofloxacin degradation; Fenton-like system; Mechanism;

    机译:Cofe-LDHS纳米蛋白酶;过氧键磺酸盐;环丙沙星降解;芬顿般的系统;机制;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号