...
首页> 外文期刊>Journal of Cleaner Production >A solar-driven lumped SOFC/SOEC system for electricity and hydrogen production: 3E analyses and a comparison of different multi-objective optimization algorithms
【24h】

A solar-driven lumped SOFC/SOEC system for electricity and hydrogen production: 3E analyses and a comparison of different multi-objective optimization algorithms

机译:用于电力和氢气生产的太阳能驱动的集体SOFC / SOEC系统:3E分析和不同多目标优化算法的比较

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a plant consisting of a solid oxide fuel cell and solid oxide electrolysis cell is proposed for power provision based on solar energy. In this system, water enters the solid oxide electrolysis cell and is split into H-2 and O-2 through the utilization of the generated power by the photovoltaic panels. The produced hydrogen is stored and sent to the solid oxide fuel cell for clean and consistent power generation. The required hydrogen of the fuel cell is measured for 24 h and the electrolysis and photovoltaic units are designed in such a way to satisfy the demand of the fuel cell while the surplus hydrogen is considered for sale. A sensitivity analysis is also conducted on the system to assess the impact of vital parameters on output power, system efficiency, total product cost and total cost rate, total exergy destruction, and payback period. Furthermore, multi-criteria optimization is applied to the system utilizing various optimization algorithms. The outcomes demonstrate that the maximum amount of exergy destruction occurs in the photovoltaic system. The results of the parametric evaluation illustrate that the payback period of the plant can reduce to 7 years when surplus hydrogen is 4 times higher than the required H-2 of the fuel cell. Furthermore, higher current densities of the SOEC system can reduce the efficiencies while increasing the payback period, so lower current densities would be more suitable. Also, there would be a local optimum point in terms of total product cost and net power outlet with the current density of the SOFC system. The optimization findings indicate that PESA-II is the most suitable algorithm for this particular system as it results in more suitable optimum points that are closer to the ideal point. In addition, at the final optimum solution point concluded by the LINMAP method, the exergy efficiency of the system would be 62% and the total cost rate is 1.297 $/h. (C) 2020 Elsevier Ltd. All rights reserved.
机译:本文提出了一种由固体氧化物燃料电池和固体氧化物电解电池组成的植物,用于基于太阳能的功率提供。在该系统中,水通过光伏板利用产生的功率进入固体氧化物电解槽并被分成H-2和O-2。将产生的氢气储存并送至固体氧化物燃料电池以进行清洁和一致的发电。测量燃料电池所需的氢,测量24小时,电解和光伏单元设计成使得满足燃料电池的需求,同时考虑剩余氢气。系统还对系统进行了敏感性分析,以评估重要参数对输出功率,系统效率,总产成本和总成本率,总漏洞破坏和投资回收期的影响。此外,利用各种优化算法应用多标准优化。结果表明,光伏系统中发生的最大损坏量。参数评价的结果表明,当剩余氢气高于燃料电池所需的H-2的高度高4倍时,植物的投资回收期可以减少到7年。此外,SOEC系统的较高电流密度可以在增加回收期的同时降低效率,因此较低的电流密度将更适合。此外,在总产品成本和净电源出口方面将存在局部最佳点,具有电流密度的SOFC系统。优化结果表明,PESA-II是该特定系统的最合适的算法,因为它导致更合适的最佳点,更接近理想点。此外,在Linmap方法结束的最终最佳解决方案点,系统的高度效率为62%,总成本率为1.297 $ / h。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号