首页> 外文期刊>Journal of Cleaner Production >Acid and ferric sulfate bioleaching of uranium ores: A review #
【24h】

Acid and ferric sulfate bioleaching of uranium ores: A review #

机译:铀矿石酸和铁硫酸铁生物酰化:评论#

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This review examines the acid and ferric sulfate bioleaching of uranium from low grade ores. The review traces back the progression of the technology from the time the role of microorganisms was recognized in the 1950's and 1960's. Some past and present uranium mining operations with active or potential microbial contribution are summarized. Experimental techniques and laboratory bioleaching experiments are described. Choice microorganisms have been iron- and sulfur-oxidizing acidophiles, comprising bacteria and archaea with mesophilic and thermophilic temperature ranges. Uranium is bioleached from ores in acidic ferric sulfate lixiviant. Ferric iron oxidizes tetravalent uranium to the hexavalent form and is thereby reduced to ferrous iron in this redox reaction. Microorganisms in the bioleaching process oxidize ferrous iron to the ferric form and thus regenerate ferric sulfate. Iron oxidation requires oxygen as the electron acceptor in the leach solution. Acidity ensures that ferric iron is soluble in the lixiviant and protons increase the solubilization of the oxidized, hexavalent uranium. Ancillary sulfide minerals such as pyrite enhance the bioleaching because their oxidation releases ferrous iron and reduced sulfur compounds for biological ferric iron and sulfuric acid generation. The main mining engineering approaches used for uranium leaching are heap, dump, stope, in situ, and in-place leaching. The efficiency of uranium bioleaching is affected by a number of mineralogical, physicochemical, microbial and process factors. Bioinformatics and synthetic biology are progressing the research on bioleaching microorganisms but these developments have not been materialized in the industrial practice of uranium mining. New applications of uranium bioleaching may focus increasingly on deposits where other products such as rare earth elements or base metals can be recovered in addition to uranium. (C) 2020 Elsevier Ltd. All rights reserved.
机译:本综述检测酸和铁硫酸铁的铀从低等级矿石中的铀生物浸出。从1950年代和1960年代认可的微生物在公认的情况下,审查追溯了技术的进展。有些过去和目前具有主动或潜在微生物贡献的铀矿业运营总结了。描述了实验技术和实验室生物浸入实验。选择微生物已经是铁和硫氧化的嗜酸性,包括细菌和嗜热和嗜热温度范围。铀从酸性铁硫酸盐液中的矿石生物浸润。铁铁将四价铀氧化成六价铀,从而在该氧化还原反应中将铁铁还原成铁铁。生物浸入过程中的微生物将铁氧化成铁形式并因此再生铁硫酸盐。铁氧化需要氧气作为浸出溶液中的电子受体。酸度确保铁铁可溶于含铅,质子增加氧化六价铀的溶解。辅助硫化物矿物如黄铁矿,增强了生物浸渍,因为它们的氧化释放了铁铁和减少的生物氧化铁和硫酸生成的硫化合物。用于铀浸出的主要采矿工程方法是堆,倾倒,突起,原位和就地浸出。铀生物浸出的效率受许多矿物学,物理化学,微生物和过程因子的影响。生物信息学和合成生物学正在进行对生物浸入微生物的研究,但这些发展在铀矿业的工业实践中尚未实现。铀生物浸出的新应用可能越来越聚焦在沉积物上,除铀外,可以回收其他产品,如稀土元素或碱金属。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号