首页> 外文期刊>Journal of Cleaner Production >Characterization of microbial evolution in high-solids methanogenic co-digestion of canned coffee processing wastewater and waste activated sludge by an anaerobic membrane bioreactor
【24h】

Characterization of microbial evolution in high-solids methanogenic co-digestion of canned coffee processing wastewater and waste activated sludge by an anaerobic membrane bioreactor

机译:厌氧膜生物反应器在罐装咖啡加工废水和废活性污泥高固体甲烷化共消化中的微生物演化特征

获取原文
获取原文并翻译 | 示例
           

摘要

The effects of the microbial community and dynamics on the efficiency of a methanogenic co-digestion system that treats canned coffee processing wastewater and waste activated sludge by means of an anaerobic membrane bioreactor, were investigated and analyzed. The co-digestion system had a chemical oxygen demand (COD) removal efficiency = 90%, and a COD to methane ratio = 85%. Phyla Synergistetes, Firmicutes, Proteobacteria and Ca. OP9 were dominant bacteria throughout the investigation, and the main contributors to the hydrolysis and fermentation processes. The degradation paths and functional microbes indicated that genera Caldicoprobacter and Clostridium were the main contributors in the hydrolysis process, while genus Anaerobaculum dominated the acidogenesis and acetogenesis at the most efficient hydraulic retention time (HRT) of 10 d (HRT10). The dominant methanogenesis varied from genus Methanosarcina (71.1%, HRT10) to Methanothermobacter (56.4%, HRT3), indicating a transition from acetic methanogenesis to hydrogen-dependent methanogenesis. Furthermore, a microbial analysis indicated that Acinetobacter was the main contributor to caffeine degradation in this system. This also appears to be the first time that Acinetobacter is reported to be capable of degrading caffeine in the anaerobic condition. (C) 2019 Elsevier Ltd. All rights reserved.
机译:研究和分析了微生物群落和动力学对甲烷化共消化系统效率的影响,该系统通过厌氧膜生物反应器处理罐装咖啡加工废水和废活性污泥。共消化系统的化学需氧量(COD)去除效率> = 90%,COD与甲烷之比> = 85%。 Phyla Synergistetes,Fimicutes,Proteobacteria和Ca。 OP9是整个研究过程中的主要细菌,并且是水解和发酵过程的主要贡献者。降解途径和功能性微生物表明,Caldicoprobacter和Clostridium属是水解过程的主要贡献者,而厌氧菌属在10 d的最有效水力停留时间(HRT)(HRT10)主导着酸化和产乙酸。占主导地位的甲烷生成过程从甲烷藻属(Methanosarcina)(71.1%,HRT10)到甲烷嗜热菌(56.4%,HRT3)不等,表明从乙酸甲烷化向氢依赖性甲烷化转变。此外,微生物分析表明不动杆菌是该系统中咖啡因降解的主要因素。这似乎也是首次报道不动杆菌能够在厌氧条件下降解咖啡因。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Journal of Cleaner Production》 |2019年第20期|1442-1451|共10页
  • 作者单位

    Xian Univ Architecture & Technol, Key Lab Northwest Water Resources Environm & Ecol, Int S&T Cooperat Ctr Urban Alternat Water Resourc, Minist Educ,Key Lab Environm Engn, 13 Yanta Rd, Xian 710055, Shaanxi, Peoples R China;

    Xian Univ Architecture & Technol, Architecture Design & Res Inst, 13 Yanta Rd, Xian 710055, Shaanxi, Peoples R China;

    Tohoku Univ, Grad Sch Environm Studies, Aoba Ku, 6-6-06 Aza Aoba, Sendai, Miyagi 9808579, Japan;

    Xian Univ Architecture & Technol, Key Lab Northwest Water Resources Environm & Ecol, Int S&T Cooperat Ctr Urban Alternat Water Resourc, Minist Educ,Key Lab Environm Engn, 13 Yanta Rd, Xian 710055, Shaanxi, Peoples R China|Tohoku Univ, Grad Sch Environm Studies, Aoba Ku, 6-6-06 Aza Aoba, Sendai, Miyagi 9808579, Japan;

    Xian Univ Architecture & Technol, Key Lab Northwest Water Resources Environm & Ecol, Int S&T Cooperat Ctr Urban Alternat Water Resourc, Minist Educ,Key Lab Environm Engn, 13 Yanta Rd, Xian 710055, Shaanxi, Peoples R China;

    Tohoku Univ, Grad Sch Environm Studies, Aoba Ku, 6-6-06 Aza Aoba, Sendai, Miyagi 9808579, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Co-digestion; Canned coffee processing wastewater; Waste activated sludge; AnMBRs; Microdynamics;

    机译:共消化;罐装咖啡加工废水;废活性污泥;ANMBRs;微动力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号