...
首页> 外文期刊>Journal of biomedical optics >Combining energy and Laplacian regularization to accurately retrieve the depth of brain activity of diffuse optical tomographic data
【24h】

Combining energy and Laplacian regularization to accurately retrieve the depth of brain activity of diffuse optical tomographic data

机译:结合能量和Laplacian正则化以准确地获取弥散光学层析成像数据的大脑活动深度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Diffuse optical tomography (DOT) provides data about brain function using surface recordings. Despite recent advancements, an unbiased method for estimating the depth of absorption changes and for providing an accurate three-dimensional (3-D) reconstruction remains elusive. DOT involves solving an ill-posed inverse problem, requiring additional criteria for finding unique solutions. The most commonly used criterion is energy minimization (energy constraint). However, as measurements are taken from only one side of the medium (the scalp) and sensitivity is greater at shallow depths, the energy constraint leads to solutions that tend to be small and superficial. To correct for this bias, we combine the energy constraint with another criterion, minimization of spatial derivatives (Laplacian constraint, also used in low resolution electromagnetic tomography, LORETA). Used in isolation, the Laplacian constraint leads to solutions that tend to be large and deep. Using simulated, phantom, and actual brain activation data, we show that combining these two criteria results in accurate (error <2 mm) absorption depth estimates, while maintaining a two-point spatial resolution of <24 mm up to a depth of 30 mm. This indicates that accurate 3-D reconstruction of brain activity up to 30 mm from the scalp can be obtained with DOT.
机译:漫射光学层析成像(DOT)使用表面记录提供有关脑功能的数据。尽管有最近的进步,但用于估计吸收变化深度并提供准确的三维(3-D)重建的无偏方法仍然难以捉摸。 DOT涉及解决不适定的逆问题,需要其他条件才能找到独特的解决方案。最常用的标准是能量最小化(能量约束)。但是,由于仅从介质(头皮)的一侧进行测量,并且在浅层深度处灵敏度较高,因此能量约束导致解决方案趋向于较小和肤浅。为了纠正这种偏差,我们将能量约束条件与另一个准则(空间导数的最小化)(拉普拉斯约束,也用于低分辨率电磁层析成像LORETA)结合起来。拉普拉斯约束单独使用时,导致的解决方案往往又大又深。使用模拟的,幻像的和实际的大脑激活数据,我们表明结合这两个标准可以得出准确的(误差<2 mm)吸收深度估计值,同时保持<24 mm的两点空间分辨率直至30 mm的深度。这表明使用DOT可以获得距头皮最远30毫米的大脑活动的精确3-D重建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号