...
首页> 外文期刊>Journal of atmospheric and oceanic technology >Using Fractal Downscaling of Satellite Precipitation Products for Hydrometeorological Applications
【24h】

Using Fractal Downscaling of Satellite Precipitation Products for Hydrometeorological Applications

机译:使用卫星降水产品的分形降尺度进行水文气象应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The objective of spatial downscaling strategies is to increase the information content of coarse datasets at smaller scales. In the case of quantitative precipitation estimation (QPE) for hydrological applications, the goal is to close the scale gap between the spatial resolution of coarse datasets (e.g., gridded satellite precipitation products at resolution L × L) and the high resolution (l × l; L l) necessary to capture the spatial features that determine spatial variability of water flows and water stores in the landscape. In essence, the downscaling process consists of weaving subgrid-scale heterogeneity over a desired range of wavelengths in the original field. The defining question is, which properties, statistical and otherwise, of the target field (the known observable at the desired spatial resolution) should be matched, with the caveat that downscaling methods be as a general as possible and therefore ideally without case-specific constraints and/or calibration requirements? Here, the attention is focused on two simple fractal downscaling methods using iterated functions systems (IFS) and fractal Brownian surfaces (FBS) that meet this requirement. The two methods were applied to disaggregate spatially 27 summertime convective storms in the central United States during 2007 at three consecutive times (1800,2100, and 0000 UTC, thus 81 fields overall) from the Tropical Rainfall Measuring Mission (TRMM) version 6 (V6) 3B42 precipitation product (~25-km grid spacing) to the same resolution as the NCEP stage IV products (~4-km grid spacing). Results from bilinear interpolation are used as the control. A fundamental distinction between IFS and FBS is that the latter implies a distribution of downscaled fields and thus an ensemble solution, whereas the former provides a single solution. The downscaling effectiveness is assessed using fractal measures (the spectral exponent β, fractal dimension D, Hurst coefficient H, and roughness amplitude R) and traditional operational scores statistics scores [false alarm rate (FR), probability of detection (PD), threat score (TS), and Heidke skill score (HSS)], as well as bias and the root-mean-square error (RMSE). The results show that both IFS and FBS fractal interpolation perform well with regard to operational skill scores, and they meet the additional requirement of generating structurally consistent fields. Furthermore, confidence intervals can be directly generated from the FBS ensemble. The results were used to diagnose errors relevant for hydrometeorological applications, in particular a spatial displacement with characteristic length of at least 50 km (2500 km2) in the location of peak rainfall intensities for the cases studied.
机译:空间缩减策略的目标是在较小规模上增加粗数据集的信息内容。在用于水文应用的定量降水估计(QPE)的情况下,目标是弥合粗糙数据集(例如,分辨率为L×L的栅格化卫星降水产物)的空间分辨率与高分辨率(l×l ; L l)是捕获确定景观中水流和蓄水量的空间变异性的空间特征所必需的。本质上,缩小规模的过程包括在原始场中的所需波长范围内编织次网格规模的异质性。定义性问题是,应匹配目标场(在所需空间分辨率下可观察到的已知场)的统计属性或其他属性,并应注意降尺度方法应尽可能通用,因此理想情况下应没有针对特定情况的约束和/或校准要求?在这里,注意力集中在使用满足此要求的使用迭代函数系统(IFS)和分形布朗表面(FBS)的两种简单的分形降尺度方法上。这两种方法分别用于从2007年的热带降雨测量任务(TRMM)版本6(V6)连续三个时间(1800,2100和0000 UTC,因此总共81个场)对美国中部的27个夏季对流风暴进行空间分类。 )3B42降水产品(约25公里的网格间距),分辨率与NCEP IV级产品(约4公里的网格间距)相同。双线性插值的结果用作控制。 IFS和FBS之间的根本区别在于,后者意味着按比例缩小的字段的分布,因此是一个整体解决方案,而前者则提供了单个解决方案。使用分形度量(频谱指数β,分形维数D,Hurst系数H和粗糙度幅度R)和传统的操作得分统计得分[错误警报率(FR),检测概率(PD),威胁得分)评估降尺度效果(TS)和Heidke技能得分(HSS)],以及偏差和均方根误差(RMSE)。结果表明,IFS和FBS分形插值在操作技能得分方面均表现出色,并且满足生成结构一致的场的附加要求。此外,可以从FBS集成中直接生成置信区间。结果被用于诊断与水文气象应用有关的误差,特别是在所研究案例中,峰值降雨强度位置中特征长度至少为50 km(2500 km2)的空间位移。

著录项

  • 来源
    《Journal of atmospheric and oceanic technology》 |2010年第3期|p.409-427|共19页
  • 作者

    Kun Tao; Ana P. Barros;

  • 作者单位

    Pratt School of Engineering, Duke University, Durham, North Carolina;

    Pratt School of Engineering, Duke University, Durham, North Carolina Duke University, P.O. Box 90287, Durham, NC 27708;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号