首页> 外文期刊>Journal of Asian earth sciences >Integrated 'plume winter' scenario for the double-phased extinction during the Paleozoic-Mesozoic transition: The G-LB and P-TB events from a Panthalassan perspective
【24h】

Integrated 'plume winter' scenario for the double-phased extinction during the Paleozoic-Mesozoic transition: The G-LB and P-TB events from a Panthalassan perspective

机译:古生代向中生代过渡期双相灭绝的综合“白雪皑皑的冬天”情景:从潘塔拉桑的角度看G-LB和P-TB事件

获取原文
获取原文并翻译 | 示例
           

摘要

The event across the Paleozoic-Mesozoic transition involved the greatest mass extinction in history together with other unique geologic phenomena of global context, such as the onset of Pangean rifting and the development of superanoxia. The detailed stratigraphic analyses on the Permo-Triassic sedimentary rocks documented a two-stepped nature both of the extinction and relevant global environmental changes at the Guadalupian-Lopingian (Middle and Upper Permian) boundary (G-LB, ca. 260Ma) and at the Permo-Triassic boundary (P-TB, ca. 252 Ma), suggesting two independent triggers for the global catastrophe. Despite the entire loss of the Permian-Triassic ocean floors by successive subduction, some fragments of mid-oceanic rocks were accreted to and preserved along active continental margins. These provide particularly important dataset for deciphering the Permo-Triassic paleo-environments of the extensive superocean Panthalassa that occupied nearly two thirds of the Earth's surface. The accreted deep-sea pelagic cherts recorded the double-phased remarkable faunal reorganization in radiolarians (major marine plankton in the Paleozoic) both across the G-LB and the P-TB, and the prolonged deep-sea anoxia (superanoxia) from the Late Permian to early Middle Triassic with a peak around the P-TB. In contrast, the accreted mid-oceanic paleo-atoll carbonates deposited on seamounts recorded clear double-phased changes of fusuline (representative Late Paleozoic shallow marine benthos) diversity and of negative shift of stable carbon isotope ratio at the G-LB and the P-TB, in addition to the Paleozoic minimum in ~(87)Sr/~(86)Sr isotope ratio in the Capitanian (Late Guadalupian) and the paleomagnetic Illawarra Reversal in the late Guadalupian. These bio-, chemo-, and magneto-stratigraphical signatures are concordant with those reported from the coeval shallow marine shelf sequences around Pangea. The mid-oceanic, deep- and shallow-water Permian records indicate that significant changes have appeared twice in the second half of the Permian in a global extent. It is emphasized here that everything geologically unusual started in the Late Guadalupian; i.e., (1) the first mass extinction, (2) onset of the superanoxia, (3) sea-level drop down to the Phanerozoic minimum, (4) onset of volatile fluctuation in carbon isotope ratio, 5)~(87)Sr/~(86)Sr ratio of the Paleozoic minimum, (6) extensive felsic alkaline volcanism, and (7) Illawarra Reversal.rnThe felsic alkaline volcanism and the concurrent formation of several large igneous provinces (LIPs) in the eastern Pangea suggest that the Permian biosphere was involved in severe volcanic hazards twice at the G-LB and the P-TB. This episodic magmatism was likely related to the activity of a mantle superplume that initially rifted Pangea. The supercontinent-dividing superplume branched into several secondary plumes in the mantle transition zone (410-660 km deep) beneath Pangea. These secondary plumes induced the decompressional melting of mantle peridotite and pre-existing Pangean crust to form several LIPs that likely caused a "plume winter" with global cooling by dust/aerosol screens in the stratosphere, gas poisoning, acid rain damage to surface vegetation etc. After the main eruption of plume-derived flood basalt, global warming (plume summer) took over cooling, delayed the recovery of biodiversity, and intensified the ocean stratification. It was repeated twice at the G-LB and P-TB.rnA unique geomagnetic episode called the Illawarra Reversal around the Wordian-Capitanian boundary (ca. 265 Ma) recorded the appearance of a large instability in the geomagnetic dipole in the Earth's outer core. This rapid change was triggered likely by the episodic fall-down of a cold megalith (subducted oceanic slabs) from the upper mantle to the D" layer above the 2900 km-deep core-mantle boundary, in tight association with the launching of a mantle superplume. The initial changes in the surface environment inrnthe Capitanian, i.e., the Kamura cooling event and the first biodiversity decline, were probably led by the weakened geomagnetic intensity due to unstable dipole of geodynamo. Under the low geomagnetic intensity, the flux of galactic cosmic radiation increased to cause extensive cloud coverage over the planet. The resultant high albedo likely drove the Kamura cooling event that also triggered the unusually high productivity in the superocean and also the expansion of O_2 minimum zone to start the superanoxia. The "plume winter" scenario is integrated here to explain the "triple-double" during the Paleozoic-Mesozoic transition interval, i.e., double-phased cause, process, and consequence of the greatest global catastrophe in the Phanerozoic, in terms of mantle superplume activity that involved the whole Earth from the core to the surface biosphere.
机译:跨越古生代-中生代过渡的事件涉及历史上最大的物种灭绝,以及全球背景下的其他独特地质现象,例如庞氏裂谷的发生和超氧现象的发展。在二叠纪-三叠纪沉积岩上进行的详细地层学分析表明,瓜达卢普-洛平阶(中二叠统和上二叠统)边界(G-LB,约260Ma)以及该地区的灭绝和相关的全球环境变化具有两步变化的性质。二叠系-三叠纪界线(P-TB,约252 Ma),暗示了全球灾难的两个独立触发因素。尽管由于连续的俯冲作用使二叠纪-三叠纪海床全部丧失,但一些中海相岩石碎片仍沿活动大陆边缘积聚并保留。这些为破译占据地球表面近三分之二的大型超海洋Panthalassa的Permo-Triassic古环境提供了特别重要的数据集。增生的深海浮游石记录了横跨G-LB和P-TB的放射虫(古生代的主要海洋浮游生物)的双阶段显着动物区系重组,以及自晚期以来长期的深海缺氧(superanoxia)。二叠纪至中三叠世早期,在结核病周围有一个高峰。相比之下,沉积在海山上的增生的中洋古钟形碳酸盐记录了富苏林(代表晚古生代浅海底栖生物)的清晰双相变化,以及G-LB和P-处稳定碳同位素比的负移。 TB,除了Capitanian(晚Guadalupian)~~(87)Sr /〜(86)Sr同位素比的古生界最小值和晚Guadalupian的古磁场Illawarra逆转。这些生物地层,化学地层和磁地层学特征与Pangea周围的中世纪浅海陆架序列所报道的特征一致。大洋中,深水和浅水二叠纪记录表明,在全球范围内,二叠纪下半年出现了两次重大变化。这里要强调的是,一切地质上不寻常的事都始于瓜达卢普晚期。即,(1)第一次大灭绝,(2)超高氧的开始,(3)海平面下降到生代最低,(4)碳同位素比的挥发性波动的开始,5)〜(87)Sr /〜(86)Sr比古生界最小值,(6)广泛的长英质碱性火山作用,和(7)Illawarra逆转。长英质碱性火山作用以及在东部Pangea几个大型火成岩省(LIPs)的同时形成表明二叠纪生物圈在G-LB和P-TB两次遭受严重的火山灾害。这种偶发的岩浆作用可能与最初裂开Pangea的地幔超级块的活动有关。超大陆划分的超级块体在Pangea下的地幔过渡带(深410-660 km)中分支成几个次级羽状流。这些次级羽状流诱发了地幔橄榄岩的减压融化,并形成了先前的庞氏地壳,形成了多个LIP,这可能会导致“泡沫冬季”,平流层中的尘埃/气溶胶滤网,气体中毒,酸雨对地表植被的损害等都会导致全球变冷。在羽状洪流玄武岩的主要喷发之后,全球变暖(夏季夏季)取代了降温,延迟了生物多样性的恢复,并加剧了海洋分层。它在G-LB和P-TB上重复了两次。rn围绕Wordian-Capitanian边界(约265 Ma)的一个独特的地磁事件称为Illawarra逆转,记录了地球外核的地磁偶极子出现了很大的不稳定性。 。这种快速的变化可能是由一个寒冷的巨石(俯冲的大洋板块)从上地幔到深达2900 km的深层地幔边界上方的D“层的突然坠落引发的,这与地幔的发射紧密相关Capitanian地表环境的初始变化,即Kamura降温事件和生物多样性的首次下降,可能是由于地磁发电机不稳定的偶极子引起的地磁强度减弱引起的;在低地磁强度下,银河系的宇宙通量辐射增加导致整个星球上广泛的云层覆盖,由此产生的高反照率可能推动了Kamura降温事件,这也触发了超海洋异常高的生产力,并引发了O_2最小区域的扩张,从而开始了超氧层流。此处集成以解释古生代-中生代过渡期间的“三重”,即双相原因,过程和结果从地幔超褶积活动的角度而言,这是古生代最严重的全球性大灾难,涉及从核心到地表生物圈的整个地球。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号