...
首页> 外文期刊>Journal of Applied Physics >Thermally stimulated ionic conductivity of sodium in thermal SiO2
【24h】

Thermally stimulated ionic conductivity of sodium in thermal SiO2

机译:SiO2中钠的热激发离子电导率

获取原文

摘要

The effect of Na+ concentration, oxide thickness, applied field, and metal electrode on thermally stimulated ionic conductivity (TSIC) measurements of positive‐ion motion in SiO2 grown on single‐crystal silicon has been studied. A surface trapping model, assuming blocking electrodes, has been used to analyze TSIC curves. Using a hyperbolic hearing rate (1/T ∝ time), for which analytic expressions for normalized first‐order TSIC curves are obtained, both energies E and preexponential factors s appropriate to the detrapping processes are obtained. Two distinct positive‐charge peaks are observed in TSIC curves. The magnitude of the low‐temperature peak, the α peak, is proportional to the amount of Na+ introduced into the sample. At high fields, the magnitude of the high‐temperature peak, the β peak, is independent of the evaporated Na+ concentration; its origin is uncertain but it may be due to mobile hydrogen. The temperature for the maxima in the TSIC curves, Tm, decreases with field for both the α and β peaks. At Na+ concentrations below 2×1012 Na+/cm2, the β peak is dominant in TSIC curves. Na+ motion from the Au‐SiO2 interface during the first heating of Au‐SiO2‐Si samples follows the simple model for release of Na+ from interface traps. On the other hand, Na+ motion from the Al‐SiO2 interface on the first heating of Al‐SiO2‐Si samples occurs at lower temperatures than for Au‐SiO2‐Si samples and appears to depend on reaction between Al and SiO2 rather than on a simple trap‐release process. Na+ release from traps at the Si‐SiO2 interface is similar with both Al and Au electro-ndes, and occurs at lower temperatures than for Na+ release from the metal‐SiO2 interface.
机译:研究了Na +浓度,氧化物厚度,外加电场和金属电极对在单晶硅上生长的SiO2中正离子运动的热激发离子电导率(TSIC)测量的影响。表面捕获模型(假设电极阻塞)已用于分析TSIC曲线。使用双曲线听觉速率(1 / T ∝时间),针对其获得了标准化的一阶TSIC曲线的解析表达式,从而获得了适合于束缚过程的能量E和预指数因子s。在TSIC曲线中观察到两个明显的正电荷峰。低温峰(α峰)的大小与引入样品中的Na +量成正比。在高磁场下,高温峰β的大小与蒸发的Na +浓度无关。它的来源尚不确定,但可能是由于流动的氢。 TSIC曲线的最大值Tm的温度随α和β峰的场而降低。当Na +浓度低于2×1012 Na + / cm2时,TSIC曲线中的β峰占优势。在第一次加热Au-SiO2-Si样品期间,来自Au-SiO2界面的Na +运动遵循从界面阱释放Na +的简单模型。另一方面,在第一次加热Al-SiO2-Si样品时,来自Al-SiO2界面的Na +运动发生在比Au-SiO2-Si样品低的温度下,并且似乎取决于Al和SiO2之间的反应,而不是取决于简单的陷阱释放过程。从Si-SiO2界面的阱中释放的Na +与Al和Au电极相似,并且发生在比从金属SiO2界面释放Na +的温度更低的温度下。

著录项

  • 来源
    《Journal of Applied Physics 》 |1975年第6期| P.2583-2598| 共16页
  • 作者

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号