...
首页> 外文期刊>Journal of Applied Physics >Simulation of field‐induced thermally stimulated currents in dielectrics. Application to the dipolar case in polymeric systems
【24h】

Simulation of field‐induced thermally stimulated currents in dielectrics. Application to the dipolar case in polymeric systems

机译:电介质中场感应热激励电流的仿真。应用于聚合物系统中的偶极子外壳

获取原文

摘要

Numerical calculations of thermally stimulated depolarization currents (TSDC) and thermally stimulated polarization currents (TSPC) have been carried out by using the bistable model of Fröhlich and taking into account the temperature dependence of equilibrium polarization according to a Langevin function. For dipolar processes characterized by a single relaxation time as well as by a spectrum of relaxation times obeying classical distribution functions (Wagner, Cole‐Cole, Fuoss‐Kirkwood, Davidson‐Cole, Havriliak‐Negami), the following predictions have been obtained: (1) A TSDC peak must be always of larger magnitude than the corresponding TSPC peak as a result of an increase in polarization taking place during the cooling step; (2) For the same reason, the magnitude and area of a TSDC peak must be dependent on the cooling rate adopted in the poling process; it also follows that, unless an instantaneous cooling is postulated, such a peak can no more be considered as depicting the relaxation properties of the material at the temperature of polarization; (3) A TSPC peak must be followed by a significant current reversal as a necessary result of the tangential convergence of the transient polarization with its decreasing saturation limit in the high‐temperature range. These predictions have been tested in a polymeric system selected for its well resolved relaxation spectrum (styrene‐butadiene block copolymer). Full qualitative agreement between experiment and theory has been found as far as the behavior of the α relaxation (glass transition) is concerned. These results show that the variations of equilibrium polarization occuring during the nonisothermal steps of TSDC and TSPC experiments cannot be a priori neglected, as is still commonly done for the determination of dipolar relaxation parameters.
机译:通过使用Fröhlich的双稳态模型并考虑了Langevin函数的平衡极化对温度的依赖性,对热激发的去极化电流(TSDC)和热激发的极化电流(TSPC)进行了数值计算。对于以单一弛豫时间和一系列弛豫时间为特征且遵循经典分布函数(Wagner,Cole-Cole,Fuoss-Kirkwood,Davidson-Cole,Havriliak-Negami)为特征的偶极过程,已获得以下预测:( 1)由于在冷却步骤中极化的增加,TSDC峰值必须始终大于相应的TSPC峰值; (2)基于同样的原因,TSDC峰的大小和面积必须取决于极化过程中采用的冷却速率;还可以得出结论,除非假定进行瞬时冷却,否则不能再认为该峰值代表了在极化温度下材料的弛豫特性。 (3)TSPC峰值之后必须有明显的电流反转,这是瞬态极化的切线收敛和在高温范围内其饱和极限降低的必然结果。这些预测已经在选择的聚合物系统中进行了测试,该系统的弛豫谱很好地分辨出来(苯乙烯-丁二烯嵌段共聚物)。就α弛豫(玻璃化转变)的行为而言,已经找到了实验和理论之间的完全定性一致性。这些结果表明,在TSDC和TSPC实验的非等温步骤中发生的平衡极化的变化不能被先验地忽略,这仍然是确定偶极弛豫参数的常用方法。

著录项

  • 来源
    《Journal of Applied Physics 》 |1980年第9期| P.4967-4975| 共9页
  • 作者

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号