...
首页> 外文期刊>Journal of Applied Physics >Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials
【24h】

Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials

机译:高通量(组合)方法在电子,磁性,光学和能源相关材料中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to fixed processing parameters. This article critically reviews the literature pertaining to applications of combinatorial materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high throughput methodologies will facilitate commercialization of novel materials for these critically important applications. Despite the overwhelming evidence presented in this paper that high throughput studies can effectively inform commercial practice, in our perception, it remains an underutilized research and development tool. Part of this perception may be due to the inaccessibility of proprietary industrial research and development practices, but clearly the initial cost and availability of high throughput laboratory equipment plays a role. Combinatorial materials science has traditionally been focused on materials discovery, screening, and optimization to combat the extremely high cost and long development times for new materials and their introduction into commerce. Going forward, combinatorial materials science will also be driven by other needs such as materials substitution and experimental verification of materials properties predicted by modeling and simulation, which have recently received much attention with the advent o- the Materials Genome Initiative. Thus, the challenge for combinatorial methodology will be the effective coupling of synthesis, characterization and theory, and the ability to rapidly manage large amounts of data in a variety of formats.
机译:高通量(组合)材料科学方法论是一种相对较新的研究范式,它提供了快速,有效的材料筛选,优化和发现的希望。该范式始于制药行业,但很快被广泛采用,以促进广泛领域中的材料研究。高通量实验的特征在于合成包含感兴趣的材料变化(通常是成分)的“库”样本,以及快速而本地化的测量方案,从而产生大量数据集。由于数据是在同一“库”样本上同时收集的,因此就固定的处理参数而言,它们可能是高度统一的。本文批判性地回顾了与组合材料科学在电子,磁性,光学和能源相关材料中的应用有关的文献。可以预期,高通量方法将有助于这些至关重要的应用中新型材料的商业化。尽管本文提供了绝大多数证据,表明高通量研究可以有效地为商业实践提供信息,但在我们看来,它仍然是未得到充分利用的研发工具。这种感觉的部分原因可能是由于无法获得专有的工业研究和开发实践,但是很明显,高通量实验室设备的初始成本和可用性起着重要作用。传统上,组合材料科学一直专注于材料发现,筛选和优化,以应对新材料及其商业应用的极高成本和漫长的开发时间。展望未来,组合材料科学也将受到其他需求的驱动,例如材料替代以及通过建模和仿真预测的材料性能的实验验证,这些新近随着材料基因组计划的出现而受到了广泛关注。因此,组合方法学面临的挑战将是综合,表征和理论的有效结合,以及快速管理各种格式的大量数据的能力。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第23期|231101-231101|共1页
  • 作者单位

    Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA|c|;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号