...
首页> 外文期刊>Journal of Applied Physics >Interaction of light with the ZnO surface: Photon induced oxygen “breathing,” oxygen vacancies, persistent photoconductivity, and persistent photovoltage
【24h】

Interaction of light with the ZnO surface: Photon induced oxygen “breathing,” oxygen vacancies, persistent photoconductivity, and persistent photovoltage

机译:光与ZnO表面的相互作用:光子诱导的氧气“呼吸”,氧气空位,持久的光电导和持久的光电压

获取原文
获取原文并翻译 | 示例

摘要

ZnO surfaces adsorb oxygen in the dark and emit CO2 when exposed to white light, reminiscent of the lungs of living creatures. We find that this exchange of oxygen with the ambient affects the integrity of the ZnO surface. Thus, it forms a basis for several interesting surface phenomena in ZnO, such as photoconductivity, photovoltage, and gas sensing, and has a role in ZnO electrical conduction. Using x-ray photoelectron spectroscopy on ZnO nanowires, we observed a decomposition of ZnO under white light and formation of oxygen-depleted surface, which explains photoconductivity by the electron donation of oxygen vacancies. Our findings suggest that the observed decomposition of the ZnO lattice may only take place due to photon-induced reduction of ZnO by carbon containing molecules (or carbo-photonic reduction), possibly from the ambient gas, accounting in a consistent way for both the reduced demands on the energy required for decomposition and for the observed emission of lattice oxygen in the form of CO2. The formation of oxygen-vacancy rich surface is suggested to induce surface delta doping, causing accumulation of electrons at the surface, which accounts for both the increase in conductivity and the flattening of the energy bands. Using surface photovoltage spectroscopy in ultra high vacuum, we monitored changes in the deep level spectrum. We observe a wide optical transition from a deep acceptor to the conduction band, which energy position coincides with the position of the so called “green luminescence” in ZnO. This green transition disappears with the formation of surface oxygen vacancies. Since the oxygen vacancies are donors, while the green transition involves surface acceptors, the results suggest that the initial emission of oxygen originates at the defect sites of the latter, thereby eliminating each other. This suggests that the green transition originates at surface Zn vacancy acceptors. Removing an oxygen atom f- om a Zn vacancy completes the vacancy to become a full ZnO molecule vacancy, which does not produce deep levels. Our results explain why ZnO finds use as an electrical detector for oxygen and for carbon containing gas molecules. They may also shed new light on photocatalytic uses of ZnO. It is suggested that similar surface phenomena may affect other semiconducting oxides.
机译:ZnO表面在黑暗中吸收氧气,并在暴露于白光时释放出CO2,让人联想到生物的肺部。我们发现氧气与周围环境的交换会影响ZnO表面的完整性。因此,它构成了ZnO中一些有趣的表面现象(如光电导率,光电压和气体传感)的基础,并在ZnO导电中起作用。使用ZnO纳米线上的X射线光电子能谱,我们观察到ZnO在白光下分解并形成贫氧表面,这可以通过电子提供氧空位来解释光电导性。我们的研究结果表明,观察到的ZnO晶格分解可能仅是由于光子诱导的含碳分子(或碳-光子还原)(可能是来自环境气体)引起的ZnO还原,以一致的方式解释了这两种还原要求分解和观察到的以CO2形式释放的晶格氧所需的能量。建议形成富氧空位的表面以引起表面δ掺杂,从而引起表面上电子的积累,这解释了电导率的增加和能带的平坦化。在超高真空中使用表面光电压光谱法,我们监测了深能级光谱的变化。我们观察到从深受体到导带的宽光学跃迁,其能量位置与ZnO中所谓的“绿色发光”的位置重合。随着表面氧空位的形成,绿色过渡消失。由于氧空位是施主,而绿色跃迁涉及表面受体,因此结果表明,氧的初始发射源自后者的缺陷部位,从而彼此消除。这表明绿色过渡起源于表面锌空位受体。从Zn空位中除去一个氧原子可完成该空位,使其变成一个完整的ZnO分子空位,而不会产生深能级。我们的结果解释了为什么ZnO可以用作氧气和含碳气体分子的电探测器。他们还可能为ZnO的光催化用途提供新的思路。建议类似的表面现象可能会影响其他半导体氧化物。

著录项

  • 来源
    《Journal of Applied Physics 》 |2014年第3期| 1-9| 共9页
  • 作者单位

    Ben Gurion University, Beer Sheva 84105, Israel|c|;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号