首页> 外文期刊>Journal of Applied Physics >How free exciton-exciton annihilation lets bound exciton emission dominate the photoluminescence of 2D-perovskites under high-fluence pulsed excitation at cryogenic temperatures
【24h】

How free exciton-exciton annihilation lets bound exciton emission dominate the photoluminescence of 2D-perovskites under high-fluence pulsed excitation at cryogenic temperatures

机译:自由激子激的湮灭如何让绑定的激子排放在低流量脉冲激发下在低温温度下占据2D-Perovskites的光致发光

获取原文
获取原文并翻译 | 示例
           

摘要

Photoluminescence (PL) spectra of atomically thin 2D lead iodide perovskite films are shown to depend on excited-state density, especially at cryogenic temperatures. At high excited-state densities and low temperatures, free exciton (FE) emission is so suppressed by exciton-exciton annihilation (EEA) that other-normally much weaker-emissions dominate the PL spectrum, such as emission from bound excitons (BEs) or PbI_2 inclusions. In the Ruddlesden-Popper perovskite with phenethylammonium (PEA) ligands (PEA_2PbI_4, PEPI), FE emission dominates at all temperatures at the excited-state densities reached with continuous wave excitation. At higher excited state densities reached with femtosecond pulsed excitation, the PL at temperatures under 100 K is dominated by BE emission redshifted from that of FE by 40.3 meV. Weak emission from PbI_2 inclusions 170 meV higher in energy than FE PL is also observable under these conditions. Equilibrium between BE and FE states explains why FE emission first increases with decreasing temperature from 290 until 140 K and then decreases with decreasing temperature as the BEs become stable. A Dion-Jacobson (DJ) material based on 1,4-phenyl-enedimethanammonium (PDMA) supports the reduction of FE emission by EEA at cryogenic temperatures. However, in the PDMA-based DJ material, BE emission is never as pronounced. At low temperatures and high-excited state densities caused by pulsed excitation, a broad emission redshifted by 390 meV from the FE dominates. Based on comparison with temperature-dependent measurements of PbI_2 films, this emission is suggested to arise from PbI_2 inclusions in the material. Possible avenues for improving PL at room temperature are discussed concerning these findings.
机译:显着薄的2D铅碘化物钙钛矿膜的光致发光(PL)光谱被显示为依赖于激发态密度,尤其是在低温温度下。在高兴奋状态和低温下,通过Exciton-Exciton湮没(EEA)如此抑制的其他 - 通常更弱的排放来抑制PL光谱,例如来自结合的激子(BES)的排放(BES)或PBI_2夹杂物。在Ruddlesden-popper Perovskite用苯乙基铵(豌豆)配体(PEA_2PBI_4,PEPI),Fe排放在兴奋状态密度的所有温度下占据了连续波激励的所有温度。在较高激发的状态密度与飞秒脉冲激励达到达中,PL在100 k下的温度下的PL由Fe的排放量为40.3 meV。在这些条件下,在比Fe PB的能量含量较高的PBI_2夹杂物的弱发射也可以观察到比Fe P1更高。 Be和Fe状态之间的平衡解释了为什么Fe发射首先增加,从290直到140k降低温度,然后随温度的降低而降低,因为BES变得稳定。基于1,4-苯基 - 己二甲醇铵(PDMA)的脱硫 - 雅各(DJ)材料支持在低温温度下通过EEA减少Fe发射。但是,在基于PDMA的DJ材料中,排放永远不会像发音。在低温和脉冲励磁引起的高兴奋状态密度下,从FE主导地位的390 Mev占据了广泛的排放。基于与PBI_2薄膜的温度依赖性测量的比较,提出了从材料中的PBI_2夹杂物产生的这种排放。关于这些发现,讨论了在室温下改善PL的可能途径。

著录项

  • 来源
    《Journal of Applied Physics》 |2021年第12期|123101.1-123101.10|共10页
  • 作者单位

    Institute of Microstructure Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany;

    Institute of Microstructure Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany Light Technology Institute Karlsruhe Institute of Technology Engesserstrasse 13 76131 Karlsruhe Germany;

    Light Technology Institute Karlsruhe Institute of Technology Engesserstrasse 13 76131 Karlsruhe Germany;

    Institute of Microstructure Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany;

    Light Technology Institute Karlsruhe Institute of Technology Engesserstrasse 13 76131 Karlsruhe Germany;

    Faculty of Physics and Materials Science Center Philipps-Universitaet Marburg Renthof 5 D-35032 Marburg Germany;

    Faculty of Physics and Materials Science Center Philipps-Universitaet Marburg Renthof 5 D-35032 Marburg Germany;

    Institute of Chemistry and Chemical Sciences Department of Chemistry and Chemical Engineering Ecole Polytechnique Federate de Lausanne Lausanne CH-1015 Switzerland;

    Institute of Microstructure Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany Light Technology Institute Karlsruhe Institute of Technology Engesserstrasse 13 76131 Karlsruhe Germany;

    Institute of Chemistry and Chemical Sciences Department of Chemistry and Chemical Engineering Ecole Polytechnique Federate de Lausanne Lausanne CH-1015 Switzerland;

    Institute of Chemistry and Chemical Sciences Department of Chemistry and Chemical Engineering Ecole Polytechnique Federate de Lausanne Lausanne CH-1015 Switzerland;

    Institute of Microstructure Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany Light Technology Institute Karlsruhe Institute of Technology Engesserstrasse 13 76131 Karlsruhe Germany;

    Institute of Microstructure Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany Light Technology Institute Karlsruhe Institute of Technology Engesserstrasse 13 76131 Karlsruhe Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号