...
首页> 外文期刊>Journal of Applied Physics >Monte Carlo simulation study of electron yields from compound semiconductor materials
【24h】

Monte Carlo simulation study of electron yields from compound semiconductor materials

机译:来自化合物半导体材料电子收益率的蒙特卡罗仿真研究

获取原文
获取原文并翻译 | 示例

摘要

A systematic study has been performed based on a Monte Carlo simulation for the investigation of secondary electron yields, backscattering coefficients, and total electron yields for eight compound semiconductor materials, i.e., AlN, TiN, VN, VC, GaAs, InAs, InSb, and PbS, at different incident electron energies in the range 0.1-10 keV. Our Monte Carlo simulation model is based on the Mott cross section for electron elastic scattering as calculated by a partial wave method and a dielectric functional approach to electron inelastic scattering with the full Penn algorithm. We used Palik's optical data for lower photon energies below 100 eVs and Henke's data for higher photon energies. The cascade production of secondary electrons in electron inelastic scattering and low energy is included in the simulation. The simulated results of electron backscattering coefficients are compared with the experimental data available in the literature. Considering the fact that the experimental data for these compound materials are not available, we have compared them with experimental data for elements having the nearest mean atomic numbers. The simulation predicted much larger backscattering coefficient values than the empirical Staub formula.
机译:基于蒙特卡洛模拟进行了系统研究,用于研究二次电子产率,反向散射系数,八个化合物半导体材料的总电子收率,即AlN,TiN,VN,VC,GaAs,InAs,InsB和PBS,在不同的入射电子能量范围内为0.1-10 kev。我们的蒙特卡罗仿真模型基于电子弹性散射的薄荷横截面,其通过局部波方法和具有全钢圈算法的电子无弹性散射的介电功能方法计算。我们使用Palik的光学数据用于低于100eV的光子能量和Henke的更高光子能量的数据。在模拟中包括电子不弹性散射和低能量中的二次电子的级联生产。将电子反向散射系数的模拟结果与文献中可用的实验数据进行比较。考虑到这些复合材料的实验数据不可用,我们将它们与具有最接近的平均原子数的元素进行了比较。模拟预测了比经验阶层公式更大的反向散射系数值。

著录项

  • 来源
    《Journal of Applied Physics 》 |2020年第1期| 015305.1-015305.14| 共14页
  • 作者单位

    Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics University of Science and Technology of China Hefei Anhui 230026 People's Republic of China;

    Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics University of Science and Technology of China Hefei Anhui 230026 People's Republic of China;

    School of Physics and Electronic Engineering Xinjiang Normal University Urumqi Xinjiang 830054 People's Republic of China;

    Department of Engineering and Applied Physics University of Science and Technology of China Hefei Anhui 230026 People's Republic of China;

    Center for Materials Research by Information Integration (CMI2) Research and Services Division of Materials Data and Integrated System (MaDIS) National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan;

    Super Computation Center University of Science and Technology of China Hefei Anhui 230026 People's Republic of China;

    Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics University of Science and Technology of China Hefei Anhui 230026 People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号