...
首页> 外文期刊>Journal of Applied Physics >Plasmon charge transfer dynamics in layered Au-ZnO nanocomposites
【24h】

Plasmon charge transfer dynamics in layered Au-ZnO nanocomposites

机译:层状AU-ZnO纳米复合材料中的等离子体电荷转移动力学

获取原文
获取原文并翻译 | 示例

摘要

Understanding the charge transfer dynamics at the interface of metals and semiconductors has received much attention in efficient plasmonic induced photonic devices. Here, we present ultrafast charge transfer dynamics in Au-ZnO nanocomposite systems by exciting them in interband and intraband levels of Au with pump energies higher (2.48 eV) and lower (1.96 eV) than the threshold energy for inter-band transition (2.4 eV), using the femtosecond time-resolved pump-probe technique. The spectral responses for both the excitations exhibit different behaviors, and these variations are quantitatively interpreted in terms of pump-induced changes in the dielectric constant of Au. It is found from the temporal dynamics that the electron-phonon component in the Au-ZnO system decays relatively faster (~3 ps in the multilayer Au-ZnO) than that observed in the Au sample (~7ps in Au) for both the pump energies. The transfer of highly energetic hot electrons from Au nanoparticles to ZnO across the Schottky barrier results in an accessible optical response for wide bandgap ZnO in the visible to infrared range via plasmon charge collection. The calculated charge transfer rate in the Au-ZnO system is found to be (>10~(11)s~(-1). Our results demonstrate the pump excitation dependent ultrafast plasmon charge behavior in an optically active Au-ZnO system that can be attractive for efficient plasmonic-based hybrid photonic devices.
机译:了解金属和半导体界面处的电荷传输动力学在有效的等离子体诱导的光子器件中得到了很多关注。在这里,我们在Au-ZnO纳米复合体系中展示超速率电荷转移动态,通过促进与泵能量更高(2.48eV)和更低(1.96eV)的AU的InterBand和IntrAnband水平而不是用于间歇转换的阈值能量(2.4eV ),使用飞秒时间分辨泵探针技术。两个激励的光谱响应表现出不同的行为,并且这些变化在Au的介电常数的泵引起的变化方面是定量地解释的。从AU-ZnO系统中的电子 - 声子组分衰减的时间动态,比在泵中的Au样品(〜7ps中的〜7ps)中观察到的速度相对更快(〜3 ps)能量。从肖特基势垒从Au纳米颗粒到ZnO的高能热电子转移到ZnO,导致通过等离子体充电收集到红外范围内的宽带隙ZnO的可访问光学响应。发现Au-ZnO系统中的计算电荷传递速率(> 10〜(11)S〜(-1)。我们的结果展示了可以对于高效的基于等离子体的混合式光子器件具有吸引力。

著录项

  • 来源
    《Journal of Applied Physics 》 |2020年第5期| 053105.1-053105.9| 共9页
  • 作者单位

    Department of Physics Indian Institute of Technology Kharagpur West Bengal 721302 India;

    Department of Physics Indian Institute of Technology Kharagpur West Bengal 721302 India;

    Department of Physics Indian Institute of Technology Kharagpur West Bengal 721302 India;

    Department of Physics Indian Institute of Technology Kharagpur West Bengal 721302 India;

    Department of Physics Indian Institute of Technology Kharagpur West Bengal 721302 India S. N. Bose National Centre for Basic Sciences Kolkata West Bengal 700106 India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号