首页> 外文期刊>Journal of Applied Physics >Geometry-dependent conductance and noise behavior of a graphene ribbon with a series of randomly spaced potential barriers
【24h】

Geometry-dependent conductance and noise behavior of a graphene ribbon with a series of randomly spaced potential barriers

机译:石墨烯带的几何依赖性电导和噪声行为,具有一系列随机间隔潜在的屏障

获取原文
获取原文并翻译 | 示例
           

摘要

We perform an envelope-function based numerical analysis of the effect of a sequence of randomly spaced potential barriers on the conductance and shot noise of an armchair graphene ribbon. The behavior is dominated by Klein tunneling and by resonant tunneling and strongly depends on the geometrical details of the device. Klein tunneling effectively filters the modes that can propagate through the device. For a large number of cascaded barriers, this gives rise to different transport regimes for metallic and semiconducting ribbons, with diverging shot noise behaviors. Resonant tunneling is instead energy selective and has quite a different effect depending on whether the barriers are identical or not. We also explore the effect of tilting the barriers with respect to the ribbon edges, observing a transition toward a diffusive transport regime and a one-third shot noise suppression. We investigate this effect, and we find that it takes place also in more traditional semiconducting materials. The results of our analysis could be instrumental for the fabrication of mode-filtering and energy-filtering graphene-based nanodevices. Moreover, our study highlights the importance of the measurement of shot noise as a probe for the nature of the transport regime.
机译:我们对基于信封功能的数值分析,对扶手椅子带的电导和射击噪声的一系列随机间隔潜在屏障的效果。该行为由Klein隧道和谐振隧道主导,并强烈取决于设备的几何细节。 Klein隧道有效地过滤通过设备传播的模式。对于大量级联障碍,这导致了金属和半导体带的不同运输制度,具有发射噪声行为。谐振隧道是能源选择性,并且根据障碍是相同的还是不相同的效果。我们还探讨了倾斜屏障对带状边缘的效果,观察朝向漫射传输制度的过渡和三分之一的噪声抑制。我们调查这种效果,我们发现它也发生了更传统的半导体材料。我们的分析结果可能是制造模式过滤和能量过滤石墨烯的纳米型纳米型的仪器。此外,我们的研究凸显了射击噪声测量作为运输制度性质的探针的重要性。

著录项

  • 来源
    《Journal of Applied Physics》 |2019年第24期|244302.1-244302.15|共15页
  • 作者单位

    Univ Pisa Dipartimento Ingn Informaz Via Girolamo Caruso 16 I-56122 Pisa Italy;

    Univ Pisa Dipartimento Ingn Informaz Via Girolamo Caruso 16 I-56122 Pisa Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号