首页> 外文期刊>Journal of Applied Physics >Investigating extraordinary optical transmission and sensing performance through periodic bilayer magneto-plasmonic structure
【24h】

Investigating extraordinary optical transmission and sensing performance through periodic bilayer magneto-plasmonic structure

机译:通过周期性双层磁等离子体结构研究非凡的光学传输和传感性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper proposes the phenomenon of extraordinary optical transmission via a magneto-plasmonic nanostructure, which combines magnetic and plasmonic functionalities. The structure includes an active magnetic film magnetized perpendicular to its surface and a plasmonic metal film, perforated with subwavelength circular annular arrays, with a ring placed in the middle of each annular circle. We use the finite element method and the finite-difference time-domain method for simulation of the structure. Numerical analysis shows an improvement in the Faraday rotation and optical transmission, simultaneously, in a magneto-plasmonic structure based on a silver- and bismuth-substituted ferrite garnet. Simultaneous improvement is achieved by coupling the TE and TM waveguide-plasmon modes. The amount of enhancement is adjusted by changing the dimensions, the periodicity of the hole arrays, and the refractive index of the materials filled in the holes. The influence of excitation of the two kinds of plasmon modes and the application of the external magnetic field are used to enhance the optical response. The resulting investigation shows two resonance peaks in the near-infrared range of the Faraday effect spectrum. Because of the strong Faraday rotation coinciding with the dual-band transmission of approximately 90%, the maximum figure of merit can also be obtained. Finally, this structure is investigated as a sensor in different reflective indexes from 1 to 1.5 RIU, and sensitivity of 45.97 nm/RIU was achieved. The potential applications of these nanostructures include, for example, subwavelength optics, optoelectronic devices, biosensing devices, and magneto-optical devices.
机译:本文提出了通过磁-等离子体纳米结构的非凡光学传输现象,该结构结合了磁和等离子体功能。该结构包括一个垂直于其表面磁化的有源磁性膜和一个等离子金属膜,该金属膜上开有亚波长的圆形环形阵列,并在每个环形圆的中间放置一个环。我们使用有限元方法和时域有限差分方法来模拟结构。数值分析表明,在基于银和铋取代的铁氧体石榴石的磁等离子体结构中,法拉第旋转和光传输同时得到了改善。通过耦合TE和TM波导-等离激元模式,可以同时实现改进。通过改变尺寸,孔阵列的周期性以及填充在孔中的材料的折射率来调节增强量。两种等离子体激元模式的激发影响和外部磁场的施加可以增强光学响应。研究结果表明,法拉第效应谱的近红外范围内有两个共振峰。由于强劲的法拉第旋转与大约90%的双频段传输相吻合,因此也可以获得最大的品质因数。最后,将该结构作为反射率从1到1.5 RIU的传感器进行了研究,灵敏度达到45.97 nm / RIU。这些纳米结构的潜在应用包括,例如,亚波长光学器件,光电器件,生物传感器件和磁光器件。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第2期|023102.1-023102.8|共8页
  • 作者

    Tajik Shaziyeh; Atlasbaf Zahra;

  • 作者单位

    Tarbiat Modares Univ Fac Elect & Comp Engn Tehran Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号