首页> 外文期刊>Journal of Applied Physics >Microstructure and electrochemical properties of nanocrystalline diamond and graphene hybridized films
【24h】

Microstructure and electrochemical properties of nanocrystalline diamond and graphene hybridized films

机译:纳米晶金刚石和石墨烯杂化膜的微观结构和电化学性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We have successfully grown a series of nanocrystalline diamond and graphene hybridized (NCD-G) films with various morphologies and compositions of grain boundaries by adjusting the growth pressure by hot-filament chemical vapor deposition and extensively investigated their electrochemical performances. In the case of low growth pressure, such as 1.0 and 1.3 kPa, there is a large amount of graphene in the NCD-G films, and graphene exhibits better crystallinity and a bigger size. These produce quicker electron exchange, rising background current, and reduced potential window. As the growth pressure increases to above 1.6 kPa, the grain boundaries are reduced, so that the NCD-G films possess fewer graphene components. As the growth pressure is 1.6 kPa, the "bridge"-like graphene stands on the neighboring nanocrystalline diamond grains, providing degraded electrochemical properties of smaller redox current. With the growth pressure further increasing to 1.9 kPa, the least trans-polyacetylene wrapped diamond grains produce slightly rising redox current, wider potential windows, and smaller background current. Graphene exists as a small slice and is distributed parallel with the grains with the growth pressure increasing to 2.2 kPa, exhibiting a significant rising redox current accompanied with wider potential windows and lower background current. It is concluded that the high diamond content is beneficial to enlarge the potential windows and decrease the background current, and the graphene components take advantage of improving the redox current. Moreover, the ordered and small graphene surrounding the diamond grains is positive to improve the electrochemical response without the rising background current. Thus, we prepare an electrochemical electrode material with excellent performance by adjusting the state and the content of each component in the NCD-G films. Published under license by AIP Publishing.
机译:通过通过热丝化学气相沉积调节生长压力,我们已经成功地生长了一系列具有各种形态和晶界组成的纳米晶金刚石和石墨烯杂化(NCD-G)膜,并广泛研究了它们的电化学性能。在低生长压力(例如1.0和1.3 kPa)的情况下,NCD-G膜中存在大量的石墨烯,并且石墨烯表现出更好的结晶度和更大的尺寸。这些产生更快的电子交换,增加背景电流,并减小电势窗口。当生长压力增加到1.6 kPa以上时,晶界减小,因此NCD-G膜具有较少的石墨烯成分。当生长压力为1.6 kPa时,“桥”状石墨烯位于相邻的纳米晶金刚石晶粒上,从而提供了较小的氧化还原电流而降低的电化学性能。随着生长压力进一步增加到1.9 kPa,最少被反式聚乙炔包裹的金刚石晶粒产生的氧化还原电流略有上升,电位窗口更宽,背景电流更小。石墨烯以小薄片的形式存在,并与晶粒平行分布,且生长压力增加到2.2 kPa,表现出显着的氧化还原电流上升,同时电位窗口更宽,背景电流更低。结论是,高金刚石含量有利于扩大电势窗口并降低背景电流,并且石墨烯组分利用改善氧化还原电流的优势。此外,包围金刚石晶粒的有序的小石墨烯对于改善电化学响应而不增加背景电流是有利的。因此,我们通过调节NCD-G膜中各组分的状态和含量来制备性能优异的电化学电极材料。由AIP Publishing授权发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号