...
首页> 外文期刊>Journal of Applied Physics >Multi-scale study of the deformation mechanisms of thermoelectric p-type half-Heusler Hf_(0.44)Zr_(0.44)Ti_(0.12)CoSb_(0.8)Sn_(0.2)
【24h】

Multi-scale study of the deformation mechanisms of thermoelectric p-type half-Heusler Hf_(0.44)Zr_(0.44)Ti_(0.12)CoSb_(0.8)Sn_(0.2)

机译:热电p型半霍斯勒Hf_(0.44)Zr_(0.44)Ti_(0.12)CoSb_(0.8)Sn_(0.2)变形机理的多尺度研究

获取原文
获取原文并翻译 | 示例

摘要

Increasing the figure of merit ZT of thermoelectric (TE) alloys is a challenge that is currently attempted through various metallurgy methods, including nanostructuring and dislocation engineering. Microstructures with such a level of complexity raise questions about the mechanical reliability of these new materials. Indeed, despite the values of hardness and elastic modulus known for the clear majority of TE materials, the data on deformation mechanisms are still rare. Focusing on the nanostructured p-type half-Heusler Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2, our multi-scale study aims to analyze the deformation mechanisms. Experiments conducted at macro-, meso-, and micro-scale are designed to trigger and assess plasticity mechanisms. Compression testing on bulk samples subject to a confining pressure environment and temperature leads to an exclusive brittle failure. The mixed mode failure mechanisms involve switching between intra- and inter-granular crack propagation, depending on the grain size met by the crack tip. Cube-corner nanoindentation at meso-scale generates cracks and enables fracture toughness estimation, while TEM analysis of the crack tip area confirms no dislocation activity and 3D-Electron Back Scattered Diffraction technique confirms the mixed crack propagation behavior. At micro-scale, micro-pillar compression stress-strain curves and failure mechanisms are comparable with bulk samples testing analysis. These results can be used to provide design guidelines for more crack-resistant TE alloys. Published by AIP Publishing.
机译:提高热电(TE)合金的ZT值是一项挑战,目前正在通过各种冶金方法进行尝试,包括纳米结构和位错工程。如此复杂的微观结构提出了有关这些新材料的机械可靠性的问题。确实,尽管绝大多数TE材料已知硬度和弹性模量值,但变形机理的数据仍然很少。针对纳米结构的p型半霍斯勒Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2,我们的多尺度研究旨在分析变形机制。在宏观,中观和微观尺度上进行的实验旨在触发和评估可塑性机制。在受限的压力环境和温度下对大块样品进行压缩测试会导致脆性破坏。混合模式破坏机制涉及在晶粒内和晶粒间裂纹扩展之间进行切换,具体取决于裂纹尖端遇到的晶粒尺寸。中等尺度的立方角纳米压痕会产生裂纹,并能够估算断裂韧性,而对裂纹尖端区域的TEM分析证实没有位错活性,而3D电子背散射衍射技术则证实了混合的裂纹扩展行为。在微观尺度上,微柱压缩应力-应变曲线和破坏机理与散装样品测试分析相当。这些结果可用于为更具抗裂性的TE合金提供设计指导。由AIP Publishing发布。

著录项

  • 来源
    《Journal of Applied Physics 》 |2018年第17期| 175104.1-175104.12| 共12页
  • 作者单位

    Univ Houston Dept Mech Engn 4800 Calhoun Rd Houston TX 77004 USA|Univ Poitiers ISAE ENSMA SP2MI Inst Pprime UPR 3346 CNRS Blvd Marie & Pierre Curie BP 30179 F-86962 Futuroscope France;

    Univ Poitiers ISAE ENSMA SP2MI Inst Pprime UPR 3346 CNRS Blvd Marie & Pierre Curie BP 30179 F-86962 Futuroscope France;

    Univ Houston Texas Ctr Superconduct Dept Phys 4800 Calhoun Rd Houston TX 77004 USA;

    Univ Houston Dept Mech Engn 4800 Calhoun Rd Houston TX 77004 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号