...
首页> 外文期刊>Journal of Applied Physics >A heat-transfer and fluid-flow-based model to obtain a specific weld geometry using various combinations of welding variables
【24h】

A heat-transfer and fluid-flow-based model to obtain a specific weld geometry using various combinations of welding variables

机译:基于热传递和流体流动的模型,可使用焊接变量的各种组合获得特定的焊接几何形状

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Numerical heat transfer and fluid flow models have provided significant insight into welding processes and welded materials that could not have been achieved otherwise. However, the use of these models has been limited by two major problems. First, the model predictions do not always agree with the experimental results because some input parameters such as the arc efficiency cannot be accurately prescribed. Second, and more important, these models cannot determine multiple pathways or sets of welding variables that can lead to a particular weld attribute such as the weld pool geometry, which is defined by an equilibrium temperature surface. Here we show that the computational heat transfer and fluid flow models of fusion welding can overcome the aforementioned difficulties by combining with a genetic algorithm. The reliability of the convective heat transfer model can be significantly improved by optimizing the values of the uncertain input parameters from a limited volume of the experimental data. Furthermore, the procedure can calculate multiple sets of welding variables, each leading to the same weld geometry. These multiple paths were obtained via a global search using a genetic algorithm within the phenomenological framework of the equations of conservation of mass, momentum, and energy. This computational procedure was applied to the gas tungsten arc welding of Ti-6Al-4V alloy to calculate various sets of welding variables to achieve a specified weld geometry. The calculated sets of welding parameters showed wide variations of values. However, each set of welding parameters resulted in a specified geometry showing the effectiveness of the computational procedure.
机译:数值传热和流体流动模型为焊接过程和焊接材料提供了重要的见识,而这些是其他方法无法实现的。但是,这些模型的使用受到两个主要问题的限制。首先,模型预测并不总是与实验结果一致,因为不能准确地规定一些输入参数,例如电弧效率。其次,更重要的是,这些模型无法确定可能导致特定焊接属性(例如,由平衡温度表面定义的焊接池几何形状)的多个路径或焊接变量集。在这里,我们表明,融合遗传算法的计算传热和流体流动模型可以克服上述困难。通过从有限的实验数据中优化不确定输入参数的值,可以显着提高对流传热模型的可靠性。此外,该程序可以计算多组焊接变量,每组导致相同的焊接几何形状。这些多重路径是通过在质量,动量和能量守恒方程的现象学框架内使用遗传算法进行全局搜索而获得的。该计算程序应用于Ti-6Al-4V合金的钨极气体保护焊,以计算各种焊接变量集,以达到指定的焊接几何形状。计算出的焊接参数组显示出很大的变化值。但是,每组焊接参数都会产生指定的几何形状,从而表明计算过程的有效性。

著录项

  • 来源
    《Journal of Applied Physics》 |2005年第4期|p.044902.1-044902.10|共10页
  • 作者

    S. Mishra; T. DebRoy;

  • 作者单位

    Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号