...
首页> 外文期刊>Journal of Applied Physics >Transport mechanism and magnetothermoelectric power of electron-doped manganites La_(0.85)Te_(0.15)Mn_(1-x)Cu_xO_3 (0 ≤ x ≤ 0.20)
【24h】

Transport mechanism and magnetothermoelectric power of electron-doped manganites La_(0.85)Te_(0.15)Mn_(1-x)Cu_xO_3 (0 ≤ x ≤ 0.20)

机译:电子掺杂锰La_(0.85)Te_(0.15)Mn_(1-x)Cu_xO_3(0≤x≤0.20)的传输机理和磁热功率

获取原文
获取原文并翻译 | 示例
           

摘要

We present the results of a systematic study of the transport mechanism and magnetothermoelectric power (MTEP) of electron-doped manganites La_(0.85)Te_(0.15)Mn_(1-x)Cu_xO_3 (0 ≤ x ≤ 0.20). Two peaks are observed in thermoelectric power S(T) curves for x < 0.10 samples. For x > 0.10 samples, the very large S value with over 100 μV/K at low temperatures appears, which is attributed to the destruction of ferromagnetic (FM) order and the strong carrier localization at low temperatures due to Cu doping. In addition, a sign variation of S(T) for Cu-doped samples is also observed, which may originate from the narrowing of the concomitant σ(e_g~↑ - 2p) band. Particularly, an anomalous behavior of S(T) is observed in x = 0.10 sample, which is suggested to be related to the contribution of spin polarization and phonon drag. Based on the results of resistivity ρ(T) and S(T), the transport mechanism in the high-temperature paramagnetic region for all the samples and low-temperature FM insulating region below T_C for the samples with x ≤ 0.10 can be described by the variable-range-hopping model. However, in the intermediate-temperature FM metallic region below T_C, ρ(T) and S(T) of the samples with x ≤ 0.10 are well fitted by the formula ρ = ρ_0 + ρ_(2.5)T~(2.5) and S=S_0 + S_(3/2)T~(3/2) + S_4T~4, respectively, implying the importance of electron-magnon scattering. As to the MTEP, only a negative MTEP peak close to T_C is observed in the whole measured temperature range for the samples with x > 0. 10, which is suggested to originate from the spin alignment induced by applied magnetic fields. However, for x ≤ 0.10 samples, an additional positive MTEP peak is induced by Cu doping below T_C besides a large negative MTEP peak in the vicinity of T_C, which is ascribed to the enhancement of electron-magnon interaction caused by the Cu doping and the decrease of magnetic entropy around T_C, respectively.
机译:我们提出系统研究电子掺杂锰La_(0.85)Te_(0.15)Mn_(1-x)Cu_xO_3(0≤x≤0.20)的传输机理和磁热功率(MTEP)的结果。在x <0.10的样品的热电功率S(T)曲线中观察到两个峰。对于x> 0.10的样品,在低温下出现的S值非常大,超过100μV/ K,这归因于铁磁(FM)序的破坏以及由于Cu掺杂导致的低温下强的载流子局部化。此外,还观察到了掺杂铜的样品的S(T)的符号变化,这可能是由于伴随的σ(e_g〜↑-2p)谱带变窄所致。特别是,在x = 0.10的样品中观察到S(T)的异常行为,这与自旋极化和声子阻力的贡献有关。根据电阻率ρ(T)和S(T)的结果,对于所有x≤0.10的样品,在高温顺磁区域中的传输机制以及在T_C以下的低温FM绝缘区域中的传输机制可以描述为可变范围跳跃模型。但是,在T_C以下的中温FM金属区域,x≤0.10的样品的ρ(T)和S(T)可以通过公式ρ=ρ_0+ρ_(2.5)T〜(2.5)和S很好地拟合。分别= S_0 + S_(3/2)T〜(3/2)+ S_4T〜4,暗示了电子-马农散射的重要性。对于MTEP,对于x> 0. 10的样品,在整个测量温度范围内仅观察到接近T_C的负MTEP峰,这被认为是由施加磁场引起的自旋对准引起的。然而,对于x≤0.10的样品,除了T_C附近的较大MTEP负峰外,Cu掺杂还会在T_C下方诱发一个额外的MTEP正峰,这归因于Cu掺杂和掺杂引起的电子-马农相互作用。 T_C附近的磁熵分别减小。

著录项

  • 来源
    《Journal of Applied Physics》 |2006年第7期|p.073706.1-073706.9|共9页
  • 作者单位

    Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用物理学;计量学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号