...
首页> 外文期刊>Journal of Applied Physics >3.4 THz heterodyne receiver using a hot electron bolometer and a distributed feedback quantum cascade laser
【24h】

3.4 THz heterodyne receiver using a hot electron bolometer and a distributed feedback quantum cascade laser

机译:使用热电子测辐射热仪和分布式反馈量子级联激光器的3.4 THz外差接收器

获取原文
获取原文并翻译 | 示例

摘要

We report a heterodyne receiver using a superconducting NbN hot electron bolometer (HEB) integrated with a tight winding spiral antenna as mixer and a distributed feedback (DFB) terahertz quantum cascade laser (QCL) operating at 3.42 THz as local oscillator. The aim is to demonstrate the readiness of both devices for the detection of OH lines at 3.5 THz in a real instrument. We show that the improved single-spot beam of the terahertz QCL can easily pump the HEB mixer. We measured a double sideband receiver noise temperature of 2100 K at the optimum local oscillator power of 290 nW. This noise temperature can be further reduced to 1100 K if we correct the loss due to the use of an uncoated lens, and the losses of the window and the air. Therefore, the combination of a HEB and such a DFB QCL can in principle be used to detect an OH line at 3.5 THz. However, a high input power of several watts, which is needed to operate the QCL in a liquid-helium cryostat, poses a big challenge to the receiver stability.
机译:我们报告了一种外差接收器,该接收器使用超导NbN热电子辐射热测量计(HEB)与紧密缠绕螺旋天线集成为混频器,并以3.42 THz的分布式反馈(DFB)太赫兹量子级联激光器(QCL)作为本地振荡器。目的是证明在实际仪器中这两种设备都可以在3.5 THz的条件下检测OH线。我们表明,太赫兹QCL的改进的单点光束可以轻松泵浦HEB混频器。我们在最佳本地振荡器功率290 nW下测量了2100 K的双边带接收机噪声温度。如果我们校正由于使用未镀膜的透镜而造成的损耗以及窗户和空气的损耗,则该噪声温度可以进一步降低至1100K。因此,HEB和这种DFB QCL的组合原则上可以用于检测3.5 THz的OH线。但是,在液氦低温恒温器中运行QCL需要几瓦特的高输入功率,这对接收器的稳定性提出了很大的挑战。

著录项

  • 来源
    《Journal of Applied Physics》 |2008年第11期|50-55|共6页
  • 作者单位

    SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen, The Netherlands;

    SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen, The Netherlands Purple Mountain Observatory (PMO), National Astronomical Observatories of China (NAOC), Chinese Academy of Sciences, 2 West Beijing Road, Nanjing, JiangSu 210008, China;

    Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;

    SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen, The Netherlands Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;

    Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands;

    Institute of Quantum Electronics, ETH-Zuerich, CH-8096 Zuerich, Switzerland;

    Institute of Quantum Electronics, ETH-Zuerich, CH-8096 Zuerich, Switzerland;

    Institute of Quantum Electronics, ETH-Zuerich, CH-8096 Zuerich, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号