首页> 外文期刊>Journal of Applied Physics >Thermal equations of state and melting of lithium deuteride under high pressure
【24h】

Thermal equations of state and melting of lithium deuteride under high pressure

机译:高压下氘化锂的状态和熔化热方程

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Based on in situ high-pressure and high-temperature neutron diffraction experiments at pressures of up to 4.1 GPa and temperatures of up to 1280 K, thermoelastic parameters were derived by using a Birch-Murnaghan equation of state. With the pressure derivative of the bulk modulus, K'_0, fixed at 4.0, we obtained the ambient bulk modulus K_0=31.5±0.7 GPa, the temperature derivative of bulk modulus at constant pressure (dK/dT)_P=-2.7 × 10~(-2) GPa/K, the volumetric thermal expansivities α_T(K~(-1))=9.8 ± 0.71 × 10~(-5)+12.62 ± 1.09 × 10~(-8) T at atmospheric pressure and α_T(K~(-1)) = 5.45 ± 1.17 × 10~(-5) + 6.53 ± 1.45 × 10~(-8) T at 3.0 GPa, and the pressure derivative of thermal expansion (dα/dP)_T=-2.72 × 10~(-5) GPa~(-1) K~(-1). Within the experimental uncertainties, the ambient bulk modulus and volumetric thermal expansion determined from this work are in good agreement with previous experimental results, whereas the derived (dK_T/dT)_P and (dα/dP)_T values provide the thermoelastic equation-of-state parameters for LiD. We also determined the melting temperature of LiD under high pressure. Our results reveal a substantially increased thermal stability for crystalline LiD when compared to a previous theoretical prediction that used a combined technique of two-phase simulation and first-principles molecular dynamics.
机译:基于在高达4.1 GPa的压力和高达1280 K的温度下的原位高压和高温中子衍射实验,通过使用Birch-Murnaghan状态方程得出热弹性参数。在将体积模量K'_0的压力导数固定为4.0的情况下,我们获得了环境体积模量K_0 = 31.5±0.7 GPa,在恒定压力下体积模量的温度导数(dK / dT)_P = -2.7×10 〜(-2)GPa / K,在大气压和α_T下的体积热膨胀系数α_T(K〜(-1))= 9.8±0.71×10〜(-5)+12.62±1.09×10〜(-8)T (K〜(-1))= 5.45±1.17×10〜(-5)+ 6.53±1.45×10〜(-8)T在3.0 GPa时,热膨胀压力导数(dα/ dP)_T =- 2.72×10〜(-5)GPa〜(-1)K〜(-1)。在实验不确定性范围内,根据这项工作确定的环境体积模量和体积热膨胀与先前的实验结果非常吻合,而导出的(dK_T / dT)_P和(dα/ dP)_T值提供了热弹性方程LiD的状态参数。我们还确定了LiD在高压下的熔化温度。与先前的理论预测相比,我们的结果表明,与使用两相模拟和第一原理分子动力学的组合技术的先前理论预测相比,晶体LiD的热稳定性大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号