...
首页> 外文期刊>Journal of Applied Physics >Thermal links for the implementation of an optical refrigerator
【24h】

Thermal links for the implementation of an optical refrigerator

机译:实施光学冰箱的热链接

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Optical refrigeration has been demonstrated by several groups of researchers, but the cooling elements have not been thermally linked to realistic heat loads in ways that achieve the desired temperatures. The ideal thermal link will have minimal surface area, provide complete optical isolation for the load, and possess high thermal conductivity. We have designed thermal links that minimize the absorption of fluoresced photons by the heat load using multiple mirrors and geometric shapes including a hemisphere, a kinked waveguide, and a tapered waveguide. While total link performance is dependent on additional factors, we have observed net transmission of photons with the tapered link as low as 0.04%. Our optical tests have been performed with a surrogate source that operates at 625 nm and mimics the angular distribution of light emitted from the cooling element of the Los Alamos solid state optical refrigerator. We have confirmed the optical performance of our various link geometries with computer simulations using CODE V optical modeling software. In addition we have used the thermal modeling tool in COMSOL MULTIPHYSICS to investigate other heating factors that affect the thermal performance of the optical refrigerator. Assuming an ideal cooling element and a nonabsorptive dielectric trapping mirror, the three dominant heating factors are (1) absorption of fluoresced photons transmitted through the thermal link, (2) blackbody radiation from the surrounding environment, and (3) conductive heat transfer through mechanical supports. Modeling results show that a 1 cm~3 load can be chilled to 107 K with a 100 W pump laser. We have used the simulated steady-state cooling temperatures of the heat load to compare link designs and system configurations.
机译:几组研究人员已经证明了光学制冷,但是冷却元件尚未以实现所需温度的方式与实际的热负荷热链接。理想的热连接将具有最小的表面积,为负载提供完全的光学隔离,并具有较高的热导率。我们设计了热链接,使用多个反射镜和几何形状(包括半球,扭结波导和锥形波导)将热负荷对荧光光子的吸收最小化。虽然总链路性能取决于其他因素,但我们观察到锥形链路的光子净传输率低至0.04%。我们的光学测试是使用替代光源进行的,该替代光源工作在625 nm处,并模拟从Los Alamos固态光学制冷机的冷却元件发出的光的角分布。我们已经使用CODE V光学建模软件通过计算机仿真确认了各种链接几何形状的光学性能。此外,我们还使用COMSOL MULTIPHYSICS中的热建模工具来研究影响光学冰箱热性能的其他加热因素。假设理想的冷却元件和非吸收性介质俘获镜,三个主要的加热因素是:(1)吸收通过热链传输的荧光光子;(2)来自周围环境的黑体辐射;以及(3)通过机械传导的热传导支持。建模结果表明,使用100 W泵浦激光器可以将1 cm〜3的负载冷却至107K。我们已经使用模拟的热负荷稳态冷却温度来比较链接设计和系统配置。

著录项

  • 来源
    《Journal of Applied Physics》 |2009年第1期|110-120|共11页
  • 作者单位

    Department of Engineering and Department of Physics, Harvey Mudd College, Claremont, California 91711, USA;

    Department of Engineering and Department of Physics, Harvey Mudd College, Claremont, California 91711, USA;

    Department of Engineering and Department of Physics, Harvey Mudd College, Claremont, California 91711, USA;

    Department of Engineering and Department of Physics, Harvey Mudd College, Claremont, California 91711, USA;

    Department of Engineering and Department of Physics, Harvey Mudd College, Claremont, California 91711, USA;

    Department of Engineering and Department of Physics, Harvey Mudd College, Claremont, California 91711, USA;

    Department of Engineering and Department of Physics, Harvey Mudd College, Claremont, California 91711, USA;

    Department of Engineering and Department of Physics, Harvey Mudd College, Claremont, California 91711, USA;

    Department of Engineering and Department of Physics, Harvey Mudd College, Claremont, California 91711, USA;

    Chemistry Division, Los Alamos National Laboratory, MS J565 Los Alamos, New Mexico 87545, USA;

    International Space and Response Division, Los Alamos National Laboratory, MS B244 Los Alamos, New Mexico 87545, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号