...
首页> 外文期刊>Journal of Applied Physics >Magnetism and magnetotransport of strongly disordered Zn_(1_x)Mn_xGeAs_2 semiconductor: The role of nanoscale magnetic clusters
【24h】

Magnetism and magnetotransport of strongly disordered Zn_(1_x)Mn_xGeAs_2 semiconductor: The role of nanoscale magnetic clusters

机译:强无序的Zn_(1_x)Mn_xGeAs_2半导体的磁性和磁输运:纳米级磁团簇的作用

获取原文
获取原文并翻译 | 示例
           

摘要

We present systematic studies of magnetic and transport properties of Zn_(1-x)Mn_xGeAs_2 semimagnetic semiconductor with the chemical composition varying between 0.053≤x≤0.182. The transport characterization showed that all investigated samples had p-type conductivity strongly depending on the chemical composition of the alloy. The Hall effect measurements revealed carrier concentrations p≥10~(19) cm~(-3) and relatively low mobilities, μ≤15 cm~2/(V s), also chemical composition dependent. The magnetic investigations showed the presence of paramagnet-ferromagnet phase transitions with transition temperatures greater than 300 K for the samples with x≥0.078. We prove by means of x-ray diffraction, nuclear magnetic resonance, and scanning electron microscopy techniques that the observed room temperature ferromagnetism is due to the presence of MnAs inclusions. The high field magnetoresistance showed the presence of giant magnetoresistance effect with maximum amplitudes around 50% due to the presence of nanosize ferromagnetic grains.
机译:我们目前对Zn_(1-x)Mn_xGeAs_2半磁性半导体的磁性和输运性质的系统研究,其化学组成在0.053≤x≤0.182之间变化。传输特性表明,所有研究的样品都强烈依赖于合金的化学组​​成而具有p型电导率。霍尔效应测量表明载流子浓度p≥10〜(19)cm〜(-3)和相对较低的迁移率μ≤15cm〜2 /(V s),也取决于化学成分。磁性研究表明,对于x≥0.078的样品,存在顺磁-铁磁体相变,且转变温度大于300K。我们通过X射线衍射,核磁共振和扫描电子显微镜技术证明,观察到的室温铁磁性是由于MnAs夹杂物的存在。高场磁阻表现出巨大的磁阻效应,由于存在纳米级铁磁晶粒,其最大振幅约为50%。

著录项

  • 来源
    《Journal of Applied Physics》 |2010年第7期|p.073925.1-073925.8|共8页
  • 作者单位

    Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland;

    rnInstitute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland;

    rnInstitute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland;

    rnInstitute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland;

    rnInstitute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland;

    rnInstitute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland;

    rnDepartment of Physics and Center for Nanophysics and Advanced Materials, University of Maryland,College Park, Maryland 20742, USA;

    rnDepartment of Physics and Center for Nanophysics and Advanced Materials, University of Maryland,College Park, Maryland 20742, USA Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;

    rnLaboratoire National des Champs Magnetiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble, France;

    rnKurnakov Institute of General and Inorganic Chemistry, RAS, 119991 Moscow, Russia;

    rnKurnakov Institute of General and Inorganic Chemistry, RAS, 119991 Moscow, Russia;

    rnKurnakov Institute of General and Inorganic Chemistry, RAS, 119991 Moscow, Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号