首页> 外文期刊>Journal of Applied Physics >Adaptive oxide electronics: A review
【24h】

Adaptive oxide electronics: A review

机译:自适应氧化物电子学:综述

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials. In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaO_x, SrTiO_3, and Bi_(4-x)La_xTiaO_(12). The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may be needed to realize the full potential of adaptive oxide electronics.
机译:人们正在积极探索新颖的信息处理技术,以克服与CMOS缩放相关的基本限制。自适应电子设备的新范例正在出现,它可能会重塑电子学的前沿领域并实现新的形式。尽管具有从医学诊断到控制系统的广泛而强大的应用程序,但是创建可学习并适应各种输入的系统通常是信息科学中的一个复杂算法问题。氧化物电子学方面的最新工作表明,在设备级别实施此类系统可能是合理的,从而大大提高了计算密度和功率效率,并扩大了布尔运算之外的电子学潜力。自适应电子学的诱人可能性包括模仿人类大脑功能的设备的制造:通过材料的电,磁,热或光学可调特性模拟突触的增强和减弱。在这篇综述中,我们详细介绍了可用于自适应电子学的功能性金属氧化物的材料和器件物理研究。已经表明,许多氧化物的特性,例如电阻率,极化和磁化强度,可以以非易失性方式进行电修饰,表明这些材料对电刺激的反应类似于神经突触。我们讨论了哪些器件特性可能与集成到自适应平台中有关,然后针对这些特性调查了各种氧化物,例如但不限于TaO_x,SrTiO_3和Bi_(4-x)La_xTiaO_(12) 。每种情况下的物理机制都在自适应电子装置的框架内进行了详细的分析。然后,我们回顾了具有功能性氧化物(例如,自可编程逻辑和神经形态电路)的理论公式化和当前实验性实现的自适应设备。最后,我们推测可能需要哪些材料物理学和工程学方面的进步来实现自适应氧化物电子学的全部潜力。

著录项

  • 来源
    《Journal of Applied Physics》 |2011年第7期|p.071101.1-071101.20|共20页
  • 作者

    Sieu D. Ha; Shriram Ramanathan;

  • 作者单位

    School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA;

    School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号