...
首页> 外文期刊>Journal of Applied Physics >Modelization of structural changes in ultra low k materials during ultraviolet cure
【24h】

Modelization of structural changes in ultra low k materials during ultraviolet cure

机译:紫外线固化过程中超低k材料的结构变化建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

As of 45 nm node, ultralow k (ULK) materials (ε_r < 2.55) are widely used in microelectronic interconnects to reduce signal propagation delay. In order to get such low dielectric constant, most of these ULK are obtained using subtractive method: after co-deposition of matrix and porogen a UV cure process is used to remove labile species (porogen). During this process, porosity is created and films are densified as shrinkage increases. This paper presents an in-depth study of the UV cure process. Two kinetic models are presented to describe shrinkage rate: the nth order and the autocatalytic model. These models also used to describe photo-polymerization shrinkage-strain of dental composite, gives predictions that are in good agreement with experimental data. We find that nth-order model is best suited to describe ULK transformations during UV cure process. CH_x bonds loss and carbon content can also be modeled using same kinetic model. In order to be able to build the model, initial SiOCH-C_xH_y film has to be over-cured to determine the maximum conversion that film can reach when submitted to extra-long cure times. Results show that such SiOCH materials have to be cured more than 250 times their nominal cure time to reach maximum shrinkage (~50%) and a complete loss of carbon, making them looking like SiO_2. When structural changes are observed at different temperature, activation energy of reactions can be determined. In this way, shrinkage reaction has an activation energy close to 1000-1100kJ/mol and CH_x bonds or carbon loss reactions have activation energy in the range of 250-400 kJ/mol, which is pretty close to C-H binding energy.
机译:从45 nm节点开始,超低k(ULK)材料(ε_r<2.55)被广泛用于微电子互连中,以减少信号传播延迟。为了获得如此低的介电常数,这些ULK中的大多数都是通过减影法获得的:在基体和致孔剂共沉积之后,使用UV固化工艺去除不稳定的物质(致孔剂)。在此过程中,随着收缩率的增加,会产生孔隙并致密化薄膜。本文对UV固化过程进行了深入研究。提出了两种动力学模型来描述收缩率:n阶和自催化模型。这些模型还用于描述牙科复合材料的光聚合收缩应变,得出的预测值与实验数据非常吻合。我们发现n阶模型最适合描述UV固化过程中的ULK转换。 CH_x键的损失和碳含量也可以使用相同的动力学模型进行建模。为了能够建立模型,必须对原始SiOCH-C_xH_y薄膜进行过度固化,以确定在经受超长固化时间后该薄膜可以达到的最大转化率。结果表明,这种SiOCH材料必须固化超过其标称固化时间的250倍以上才能达到最大收缩率(〜50%)和碳的完全损失,使它们看起来像SiO_2。当在不同温度下观察到结构变化时,可以确定反应的活化能。这样,收缩反应的活化能接近1000-1100kJ / mol,CH_x键或碳损失反应的活化能在250-400kJ / mol的范围内,这非常接近C-H的结合能。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第22期|224110.1-224110.8|共8页
  • 作者单位

    STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles, Fiance;

    STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles, Fiance;

    STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles, Fiance;

    STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles, Fiance;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号