首页> 外文期刊>Journal of Applied Physics >Band-gap energy of heteropoly compounds containing Keggin polyanion-[PV_xMo_(12-x)O_(40)]~(-(3+x)) relates to counter-cations and temperature studied by UV-VIS diffuse reflectance spectroscopy
【24h】

Band-gap energy of heteropoly compounds containing Keggin polyanion-[PV_xMo_(12-x)O_(40)]~(-(3+x)) relates to counter-cations and temperature studied by UV-VIS diffuse reflectance spectroscopy

机译:含Keggin聚阴离子-[PV_xMo_(12-x)O_(40)]〜(-(3 + x))的杂多化合物的带隙能与抗阳离子和温度相关,通过UV-VIS漫反射光谱法研究

获取原文
获取原文并翻译 | 示例
           

摘要

The band gap energy (absorption edge energies) of the pure H_3[PMo_(12)O_(40)]·13H_2O and H_4[PVMo_(11)O_(40)]·13H_2O, respectively, supported on SiO_2 and SiC and some of its NH_4~+ and Cs+ salts were determined by different methods. The influence of the counter-cations and the temperature on band gap energy was studied. In this purpose, the diffuse reflectance spectra of above mentioned compounds were registered at different temperatures, and it were transposed in the curves of the Kubelka-Munk function vs. wavelength. The band gap energies were determined by processing of low field energy of the ligand-metal charge transfer band (O~(2-)→Mo~(6+) and O~(2-)→V~(5+)) usually observed between 200 and 400 nm on these curves. In this aim, the Tauc's relation was adapted for Kubelka-Munk function use and it was plotted for n = 1/2 (direct transition) and 2 (indirect transition) vs. wave energy (photon energy). The intersection of the curves' tangent drawn to their point of inflection with horizontal axis gives the band gap energy. The other method for calculation of band gap energy was the differential calculus on the Kubelka-Munk function vs. wave energy curve where the x value corresponding to curves' maximum is the found value. The comparison between experimental band gap values and literature data showed their partial fit. The higher temperature produces the band gap energy diminution as a result of a stronger interaction between Keggin Units, which occurs especially by the crystallization water loss. The Keggin Units isolation one from another by voluminous counter-ion or their spreading on a support leads to a weaker interaction between them and as a consequence, the increasing of absorption edge energy. A linear correlation of the crystallites size with band gap energy was observed.
机译:纯H_3 [PMo_(12)O_(40)]·13H_2O和H_4 [PVMo_(11)O_(40)]·13H_2O的带隙能(吸收边缘能)分别负载在SiO_2和SiC以及一些NH_4〜+和Cs +盐的测定方法不同。研究了抗衡阳离子和温度对带隙能量的影响。为此,在不同温度下记录了上述化合物的漫反射光谱,并将其转换为Kubelka-Munk函数与波长的关系曲线。带隙能通常通过处理配体-金属电荷转移带的低场能(O〜(2-)→Mo〜(6+)和O〜(2-)→V〜(5+))来确定在这些曲线上观察到200至400 nm之间。在这个目标中,Tauc关系适用于Kubelka-Munk函数,并绘制了n = 1/2(直接跃迁)和2(间接跃迁)对波能量(光子能量)的关系。曲线的切线与拐点的交点与水平轴的交点给出带隙能量。计算带隙能量的另一种方法是在Kubelka-Munk函数与波能曲线上进行微分计算,其中对应于曲线最大值的x值是找到的值。实验带隙值与文献数据之间的比较表明了它们的局部拟合。较高的温度会由于Keggin单元之间更强的相互作用而导致带隙能量减小,尤其是由于结晶水的损失而引起的相互作用。 Keggin单元通过大量的抗衡离子或它们在支撑物上的扩散相互隔离,导致它们之间的相互作用较弱,因此吸收边缘能量增加。观察到微晶尺寸与带隙能量的线性相关。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第13期|133503.1-133503.7|共7页
  • 作者

    Viorel Sasca; Alexandru Popa;

  • 作者单位

    Institute of Chemistry Timisoara-Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timisoara, Romania;

    Institute of Chemistry Timisoara-Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timisoara, Romania;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号