...
首页> 外文期刊>Journal of Applied Physics >Nitrogen-doped Ge_3Te_2 materials with self-restricted active region for low - power phase-change memory
【24h】

Nitrogen-doped Ge_3Te_2 materials with self-restricted active region for low - power phase-change memory

机译:具有自限活性区的掺氮Ge_3Te_2材料用于低功率相变存储器

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, nitrogen-doped Ge_3Te_2 materials have been investigated for low power phase-change memory. Nitrogen incorporated in Ge_3Te_2 increases the crystallization temperature, electrical resistance, and band gap significantly. The introduced GeN_x pile up at the grain-boundaries and suppress the crystal growth of Ge_3Te_2, which further leads to larger crystalline resistance and smaller active region. 10-year data retention of nitrogen-doped Ge_3Te_2 film reaches a peak value with a N_2 flow of 2 sccm, while it decreases sharply as the N_2 flow reaches 3 sccm. This is due to the formation of inhomogeneous nucleation sites at the GeN_x-GeTe interface. Phase-change memory device based on nitrogen-doped Ge_3Te_2 film shows much lower RESET power consumption than that of pure Ge_3Te_2. It's considered that the self-restricted active region and effect of GeN_x microheaters play an important role in cutting down the power consumption.
机译:本文研究了掺氮的Ge_3Te_2材料用于低功率相变存储器。 Ge_3Te_2中掺入的氮会显着增加结晶温度,电阻和带隙。引入的GeN_x堆积在晶界处并抑制了Ge_3Te_2的晶体生长,这进一步导致更大的晶体电阻和更小的活性区。掺氮的Ge_3Te_2薄膜的10年数据保留在N_2流量为2 sccm时达到峰值,而随着N_2流量达到3 sccm时急剧下降。这是由于在GeN_x-GeTe界面上形成了不均匀的成核位点。基于氮掺杂的Ge_3Te_2薄膜的相变存储器件显示出的RESET功耗要比纯Ge_3Te_2更低。人们认为,GeN_x微型加热器的自限制有源区和作用在降低功耗方面起着重要作用。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第3期|034310.1-034310.5|共5页
  • 作者单位

    Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, People's Republic of China,Shanghai Key Laboratory of Nanofabrication Technology for Memory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China;

    Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, People's Republic of China;

    Shanghai Key Laboratory of Nanofabrication Technology for Memory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China;

    Shanghai Key Laboratory of Nanofabrication Technology for Memory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China;

    Shanghai Key Laboratory of Nanofabrication Technology for Memory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China;

    Shanghai Key Laboratory of Nanofabrication Technology for Memory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China;

    Shanghai Key Laboratory of Nanofabrication Technology for Memory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China;

    Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号