首页> 外文期刊>Journal of Applied Physics >Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source
【24h】

Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

机译:锗从局部来源扩散而生长的SiGe岛的塑性弛豫极限延迟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a ther-modynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.
机译:纳米尺度系统中的异质外延应变松弛在影响其性能方面起着基本作用。在这里,通过原子力和透射电子显微镜研究了通过表面热扩散从局部锗固体源在Si(100)上进行表面热扩散而生长的自组装SiGe岛的弹性和塑性弛豫,从而能够同时研究应变的弛豫。不同的动力机制。通过这种技术生长的岛状物保持无位错,并且在基底宽度高达350 nm的情况下保持了与基底的结构一致性。结果表明,由表面热扩散引起的增强的Si-Ge混合促进了塑性弛豫的延迟,这在临界核形成之前已经发生在SiGe覆盖层中。混合的局部熵占主导地位,导致系统达到热力学平衡,在该平衡中,具有低残余应力的无错位浅岛在能量上稳定。这些发现阐明了界面动力学在纳米级调制晶格畸变中的作用,并强调了我们的生长策略在为新一代设备创建成分和应变控制纳米结构方面的潜在用途。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第10期|104309.1-104309.7|共7页
  • 作者单位

    CNISM-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32,I-20133 Milano, Italy,Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA;

    IMM-CNR, Stradale Primosole 50,I-95121 Catania, Italy;

    CNISM-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32,I-20133 Milano, Italy;

    CNR-IFN, LNESS, Via Anzani 42,I-22100 Coma, Italy;

    Dipartimento di Scienza dei Materiali and L-NESS, Universita Milano-Bicocca, via Cozzi 53, I-20125 Milano, Italy;

    Dipartimento di Scienza dei Materiali and L-NESS, Universita Milano-Bicocca, via Cozzi 53, I-20125 Milano, Italy;

    Department of Sciences at the Universita Roma Tre, Via Vasca Navale 79, 00146 Roma, Italy;

    CNISM, LNESS, Dipartimento di Fisica, Politecnico di Milano (Polo di Como), Via Anzani 42, I-22100 Como, Italy;

    ICFO-The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, 3, E-08860 Castelldefels (Barcelona), Spain;

    Dipartimento di Scienza dei Materiali and L-NESS, Universita Milano-Bicocca, via Cozzi 53, I-20125 Milano, Italy;

    Dipartimento di Scienza dei Materiali and L-NESS, Universita Milano-Bicocca, via Cozzi 53, I-20125 Milano, Italy,UMET, University of Lille 1, Villeneuve d'Ascq, France;

    CNISM-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32,I-20133 Milano, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号