...
首页> 外文期刊>Journal of Applied Physics >Using band engineering to tailor the emission spectra of trichromatic semipolar InGaN light-emitting diodes for phosphor-free polarized white light emission
【24h】

Using band engineering to tailor the emission spectra of trichromatic semipolar InGaN light-emitting diodes for phosphor-free polarized white light emission

机译:使用能带工程定制三色半极性InGaN发光二极管的发射光谱以实现无磷偏振白光发射

获取原文
获取原文并翻译 | 示例

摘要

We report a polarized white light-emitting device that monolithically integrates an electrically injected blue light-emitting diode grown on the (2021) face of a bulk GaN substrate and optically pumped InGaN quantum wells (QWs) with green and red light emission grown on the (2021) face. To overcome the challenges associated with growing high indium content InGaN QWs for long wavelength emission, a p-i-n doping profile was used to red-shift the emission wavelength of one of the optically pumped QWs by creating a built-in electric field in the same direction as the polarization-induced electric field. Emission peaks were observed at 450 nm from the electrically injected QW and at 520 nm and 590 nm from the optically pumped QWs, which were situated in n-i-n and p-i-n structures, respectively. The optically pumped QW in the p-i-n structure was grown at a growth temperature that was 10 ℃ colder compared to the QW in the n-i-n structure, so the emission from the QW in the p-i-n structure was red-shifted due to increased indium content as well as the built-in electric field. Modeling work confirmed that the built-in electric field made a greater contribution than the change in alloy composition to the red-shift in emission from the QW in the p-i-n structure. The combined emission from the red, green, and blue QWs resulted in white-light emission with Commission Internationale de l'Eclairage x- and y-chromaticity coordinates of (0.33,0.35) and an optical polarization ratio of 0.30.
机译:我们报告了一种极化的白色发光器件,该器件将生长在块状GaN衬底的(2021)面上的电注入蓝色发光二极管与光泵浦的InGaN量子阱(QW)单片集成,并在其上生长绿色和红色发光(2021)面对为了克服为长波长发射而生长高铟含量InGaN QW所带来的挑战,采用引脚掺杂轮廓,通过在与发射方向相同的方向上产生内置电场来使光泵浦QW之一的发射波长红移。极化感应电场。从电注入的QW在450 nm处以及从光泵浦的QW在520 nm和590 nm处观察到发射峰,它们分别位于n-i-n和p-i-n结构中。与nin结构中的QW相比,pin结构中的光泵浦QW的生长温度要低10℃,因此由于铟含量的增加以及Pin结构中QW的发射红移。内置电场。建模工作证实,与p-i-n结构中的QW发射的红移相比,内置电场对合金成分的变化贡献更大。红色,绿色和蓝色QW的组合发射导致白光发射,Commission Internationale de l'Eclairage委员会的x和y色度坐标为(0.33,0.35),光偏振比为0.30。

著录项

  • 来源
    《Journal of Applied Physics 》 |2016年第3期| 033102.1-033102.7| 共7页
  • 作者单位

    Materials Department, University of California, Santa Barbara, California 93106, USA;

    Materials Department, University of California, Santa Barbara, California 93106, USA;

    Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA;

    Materials Department, University of California, Santa Barbara, California 93106, USA;

    Materials Department, University of California, Santa Barbara, California 93106, USA,Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA;

    Materials Department, University of California, Santa Barbara, California 93106, USA,Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号