...
首页> 外文期刊>Journal of Applied Physics >Anomalous compression behavior of ~12 nm nanocrystalline TiO_2
【24h】

Anomalous compression behavior of ~12 nm nanocrystalline TiO_2

机译:〜12 nm纳米TiO_2的异常压缩行为

获取原文
获取原文并翻译 | 示例

摘要

When the grain size decreases, there inevitably exists a critical size (d_c) where the contribution of surface atoms to the physical properties is competitive with that of the interior atoms, giving rise to a wide variety of new phenomena. The behavior of granular materials near d_c is particularly interesting because of the crossover, a continuous transition from one type of mechanism to another. In situ high-pressure x-ray diffraction experiments showed that the compression curve of nanocrystalline anatase TiO_2 with grain size near d_c reached a platform after about 5%-6% of deformation under hydrostatic compression. Eventually, the unit cell volume of anatase expanded at ~ 14-16 GPa. We propose that the anomalous compression behavior is attributed to the formation and thickening of the stiff high density amorphous shell under high pressure, giving rise to a great arching effect at the grain boundary at the nanolevel. This process results in a remarkable difference in stress between inside and outside of the shell, generating the illusions of the hardening and the negative compressibility. This study offers a new insight into the mechanical properties of nanomaterials under extreme conditions.
机译:当晶粒尺寸减小时,不可避免地存在临界尺寸(d_c),其中表面原子对物理性质的贡献与内部原子的贡献竞争,从而引起各种各样的新现象。接近d_c的粒状材料的行为特别有趣,这是因为交叉,即从一种类型的机理到另一种类型的机理的连续过渡。原位高压X射线衍射实验表明,在静水压下约5%-6%变形后,d_c附近的纳米晶锐钛矿型TiO_2的压缩曲线达到了平台。最终,锐钛矿的单位细胞体积扩大到约14-16 GPa。我们提出异常的压缩行为是由于在高压下刚性高密度非晶态壳的形成和增厚引起的,从而在纳米级的晶界处产生了很大的拱形效应。该过程导致壳内部和外部之间的应力差异显着,从而产生硬化和负压缩性的幻觉。这项研究为纳米材料在极端条件下的机械性能提供了新的见解。

著录项

  • 来源
    《Journal of Applied Physics 》 |2017年第21期| 215109.1-215109.7| 共7页
  • 作者单位

    Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China,Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;

    Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;

    Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;

    Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;

    Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;

    Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;

    Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;

    Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;

    Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China,Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号