...
首页> 外文期刊>Journal of Applied Physics >Ultrafast scanning electron microscope applied for studying the interaction between free electrons and optical near-fields of periodic nanostructures
【24h】

Ultrafast scanning electron microscope applied for studying the interaction between free electrons and optical near-fields of periodic nanostructures

机译:超快扫描电子显微镜用于研究自由电子与周期性纳米结构的光学近场之间的相互作用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we describe an ultrafast scanning electron microscope setup developed for the research of inelastic scattering of electrons at optical near-fields of periodic dielectric nanostructures. Electron emission from the Schottky cathode is controlled by ultraviolet femtosecond laser pulses. The electron pulse duration at the interaction site is characterized via cross-correlation of the electrons with an infrared laser pulse that excites a synchronous periodic near-field on the surface of a silicon nanostructure. The lower limit of 410 fs is found in the regime of a single electron per pulse. The role of pulse broadening due to Coulomb interaction in multielectron pulses is investigated. The setup is used to demonstrate an increase in the interaction distance between the electrons and the optical near-fields by introducing a pulse-front-tilt to the infrared laser beam. Furthermore, we show the dependence of the final electron spectra on the resonance condition between the phase velocity of the optical near-field and the electron propagation velocity. The resonance is controlled by adjusting the initial electron energy/velocity and by introducing a linear chirp to the structure period allowing the increase of the final electron energy gain up to a demonstrated value of 3.8 keV. Published by AIP Publishing.
机译:在本文中,我们描述了一种用于研究周期性介电纳米结构的光学近场中电子的非弹性散射的超快扫描电子显微镜装置。肖特基阴极发出的电子受紫外线飞秒激光脉冲控制。相互作用部位的电子脉冲持续时间通过电子与红外激光脉冲的互相关来表征,该红外激光脉冲激发硅纳米结构表面上的同步周期性近场。在每个脉冲单个电子的状态下发现410 fs的下限。研究了由于库仑相互作用在多电子脉冲中脉冲展宽的作用。该设置用于通过向红外激光束引入脉冲前倾斜来演示电子与光学近场之间相互作用距离的增加。此外,我们显示了最终电子光谱对光学近场相速度和电子传播速度之间共振条件的依赖性。通过调节初始电子能量/速度并通过在结构周期中引入线性线性调频来控制谐振,从而允许最终电子能量增益增加到3.8 keV的证明值。由AIP Publishing发布。

著录项

  • 来源
    《Journal of Applied Physics 》 |2018年第2期| 023104.1-023104.10| 共10页
  • 作者单位

    Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Staudtstr 1, D-91058 Erlangen, Germany;

    Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Staudtstr 1, D-91058 Erlangen, Germany;

    Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Staudtstr 1, D-91058 Erlangen, Germany;

    Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Staudtstr 1, D-91058 Erlangen, Germany;

    Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Staudtstr 1, D-91058 Erlangen, Germany;

    Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Staudtstr 1, D-91058 Erlangen, Germany;

    Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Staudtstr 1, D-91058 Erlangen, Germany;

    Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Staudtstr 1, D-91058 Erlangen, Germany;

    Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Staudtstr 1, D-91058 Erlangen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号