首页> 外文期刊>Journal of Applied Physics >Fourier and non-Fourier bio-heat transfer models to predict ex vivo temperature response to focused ultrasound heating
【24h】

Fourier and non-Fourier bio-heat transfer models to predict ex vivo temperature response to focused ultrasound heating

机译:傅里叶和非傅里叶生物传热模型预测离体温度对聚焦超声加热的响应

获取原文
获取原文并翻译 | 示例
           

摘要

Although predicting temperature variation is important for designing treatment plans for thermal therapies, research in this area is yet to investigate the applicability of prevalent thermal conduction models, such as the Pennes equation, the thermal wave model of bio-heat transfer, and the dual phase lag (DPL) model. To address this shortcoming, we heated a tissue phantom and ex vivo bovine liver tissues with focused ultrasound (FU), measured the temperature response, and compared the results with those predicted by these models. The findings show that, for a homogeneous-tissue phantom, the initial temperature increase is accurately predicted by the Pennes equation at the onset of FU irradiation, although the prediction deviates from the measured temperature with increasing FU irradiation time. For heterogeneous liver tissues, the predicted response is closer to the measured temperature for the non-Fourier models, especially the DPL model. Furthermore, the DPL model accurately predicts the temperature response in biological tissues because it increases the phase lag, which characterizes microstructural thermal interactions. These findings should help to establish more precise clinical treatment plans for thermal therapies. Published by AIP Publishing.
机译:尽管预测温度变化对设计热疗法的治疗计划很重要,但该领域的研究尚未研究流行的热传导模型的适用性,例如Pennes方程,生物热传递的热波模型和双相滞后(DPL)模型。为了解决此缺点,我们用聚焦超声(FU)对组织体模和离体牛肝组织进行了加热,测量了温度响应,并将结果与​​这些模型预测的结果进行了比较。研究结果表明,对于均匀组织体模,在FU辐照开始时,通过Pennes方程可以准确地预测初始温度升高,尽管该预测会随着FU辐照时间的增加而偏离实测温度。对于异质肝组织,对于非傅立叶模型,尤其是DPL模型,预测的响应更接近实测温度。此外,DPL模型可准确预测生物组织中的温度响应,因为它会增加相位滞后,这是微结构热相互作用的特征。这些发现应有助于建立更精确的热疗法临床治疗计划。由AIP Publishing发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2018年第17期|174906.1-174906.7|共7页
  • 作者单位

    Nanjing Univ, Dept Phys, Collaborat Innovat Ctr Adv Microstruct, Key Lab Modern Acoust MOE, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ, Dept Phys, Collaborat Innovat Ctr Adv Microstruct, Key Lab Modern Acoust MOE, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ, Dept Phys, Collaborat Innovat Ctr Adv Microstruct, Key Lab Modern Acoust MOE, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ, Dept Phys, Collaborat Innovat Ctr Adv Microstruct, Key Lab Modern Acoust MOE, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ, Dept Phys, Collaborat Innovat Ctr Adv Microstruct, Key Lab Modern Acoust MOE, Nanjing 210093, Jiangsu, Peoples R China;

    Zhejiang Univ, Affiliated Hosp 2, Dept Ultrasound, Sch Med, Hangzhou 310009, Zhejiang, Peoples R China;

    Nanjing Univ, Dept Phys, Collaborat Innovat Ctr Adv Microstruct, Key Lab Modern Acoust MOE, Nanjing 210093, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号