【24h】

Boride Cathodes

机译:硼化物阴极

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The thermionic emission properties of the borides of the alkaline‐earth and rare‐earth metals and thorium have been investigated. These compounds all have the same formula MB6 and the same crystal structure consisting of a three‐dimensional boron framework in whose interlattice spaces the metal atoms are embedded. The valence electrons of the metal atoms are not accepted by the B6 complex, thus giving rise to the presence of free electrons which impart a metallic character to these compounds. This, together with the strong bonds between the boron atoms in the framework, produces a series of compounds which have high electrical conductivities and high thermal and chemical stabilities—ideal properties for a cathode material. When this structure is heated to a sufficiently high temperature, the metal atoms at the surface evaporate away. They are, however, immediately replaced by diffusion of metal atoms from the underlying cells. The boron frame work does not evaporate but remains intact. This process gives a mechanism for constantly maintaining an active cathode surface. Thermionic emission measurements made on these materials show the rare‐earth metal borides to be superior to the others. The highest emission was obtained from lanthanum boride. Its emission constants for the Dushman equation were ϕ=2.66 volts and A=29 amps/cm2/degK2. This is higher than the emission normally obtained from thoria. Lanthanum boride has a relatively low evaporation rate corresponding to a latent heat of evaporation of 169 kilocalories per mole. If the hexaborides are operated at high temperature in contact with the refractory metals, boron diffuses into their metal lattices forming interstitial boron alloys with them. When this occurs, the boron framework which holds the alkaline‐earth or rare‐earth metal atoms collapses, permitting the latter to evaporate. However, the hexaboride -ncathodes may be operated at high temperatures in contact with tantalum carbide or graphite. Lanthanum boride cathodes are especially useful in applications where high current densities are required. They are also suitable for high voltage applications because they stand up well under positive ion bombardment. Since they are atmospherically stable and activate easily, they have found wide use in experimental demountable systems.
机译:研究了碱土金属,稀土金属和or的硼化物的热电子发射特性。这些化合物都具有相同的分子式MB6和相同的晶体结构,该结构由三维硼骨架组成,金属原子嵌入其晶格空间中。金属原子的价电子不被B6络合物接受,因此产生了自由电子,这些自由电子赋予这些化合物以金属特性。这与骨架中硼原子之间的强键一起,产生了一系列具有高电导率以及高热稳定性和化学稳定性的理想化合物,这是阴极材料的理想性能。当将该结构加热到足够高的温度时,表面上的金属原子蒸发掉。但是,它们立即被下层电池中的金属原子扩散所取代。硼框架不会蒸发,但仍保持完整。该过程提供了用于恒定地维持活性阴极表面的机制。在这些材料上进行的热电子发射测量表明,稀土金属硼化物优于其他金属硼化物。从硼化镧获得最高的发射。 Dushman方程的发射常数为ϕ = 2.66伏,A = 29安/ cm2 / degK2。这高于通常从氧化ria获得的发射。硼化镧具有相对较低的蒸发速率,对应于每摩尔169千卡的蒸发潜热。如果六硼化物在高温下与难熔金属接触,硼会扩散到其金属晶格中,从而与它们形成间隙硼合金。发生这种情况时,容纳碱土或稀土金属原子的硼骨架会坍塌,从而使后者蒸发。然而,六硼化物-n-阴极可在高温下与碳化钽或石墨接触操作。硼化镧阴极特别适用于需要高电流密度的应用。它们还适用于高压应用,因为它们在阳离子轰击下能很好地站立。由于它们在大气中稳定并且易于激活,因此已在实验可拆卸系统中得到广泛使用。

著录项

  • 来源
    《Journal of Applied Physics》 |1951年第3期|共11页
  • 作者

    Lafferty J. M.;

  • 作者单位

    General Electric Research Laboratory, Schenectady, New York;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号