首页> 外文期刊>Journal of Analytical & Applied Pyrolysis >A new insight into pyrolysis mechanism of three typical actual biomass: The influence of structural differences on pyrolysis process
【24h】

A new insight into pyrolysis mechanism of three typical actual biomass: The influence of structural differences on pyrolysis process

机译:三种典型实际生物质热解机理的新见解:结构差异对热解过程的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Biomass pyrolysis involves complex structural changes and numerous chemical reactions. At present, most studies on actual biomass pyrolysis focus on the macroscopic thermal degradation process, while the studies on microscopic pyrolysis rules are still very limited. This work provides a new insight into the pyrolysis mechanism of three types of actual biomass, namely hardwood (eucalyptus saligna), softwood (pinus sylvestris) and straw (corn straw), by combining in-situ characterization of the evolution of biomass structures with density functional theory (DFT) calculations of pyrolysis pathways. Firstly, the evolution of various characteristic structures during biomass pyrolysis was monitored by in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFT). It was found that the thermal stability of the same functional group in different biomass samples are not exactly the same, and the structural differences in biomass would lead to different pyrolysis behaviors. Then, considering the great structural difference of hemicellulose in different biomass, the key initial pyrolysis reaction paths including the cleavage of glycosidic bonds, the dissociation of side chains and the opening of sugar ring of hemicellulose were studied by DFT calculations. It was found that the cleavage of glycosidic bonds and the dissociation of O-acetyl side chains of glucomannan in softwood hemicellulose are more advantageous than those of xylan in hardwood and straw hemicellulose. In addition, the cleavage mechanism of hemicellulose-lignin bond (LC), a characteristic connection structure between different components of actual biomass, was investigated. The result showed that the cleavage of C alpha-O mainly occurred by concerted mechanism for alpha-ether bond of LC.
机译:生物质热解涉及复杂的结构变化和许多化学反应。目前,大多数关于实际生物质热解的研究重点关注宏观热降解过程,而微观热解规则的研究仍然非常有限。这项工作通过结合原位表征生物质结构的浓度的原位表征,对三种类型的实际生物质,即硬木(桉树),软木(玉米羚羊)和秸秆(玉米秸秆)进行了新的洞察热解机制。热解途径的功能理论(DFT)计算。首先,通过原位漫反射红外傅里叶变换光谱(原位漂移)监测生物质热解期间各种特征结构的演变。发现不同生物量样品中相同官能团的热稳定性不完全相同,生物质的结构差异会导致不同的热解行为。然后,通过DFT计算研究了包括糖苷键的裂解,侧链的解离和半纤维素的糖环的解离的关键初始热解反应路径。发现糖苷键的切割和软木半纤维素在软木半纤维素中的葡糖胺烷南甘油的解离比硬木和秸秆半纤维素中的木聚糖更有利。此外,研究了半纤维素 - 木质素键(LC)的切割机制,实际生物质的不同组分之间的特征连接结构。结果表明,C alpha-O的切割主要是LCα-醚键的齐节机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号