首页> 外文期刊>Journal of Analytical & Applied Pyrolysis >Synergistic effects of biomass building blocks on pyrolysis gas and bio-oil formation
【24h】

Synergistic effects of biomass building blocks on pyrolysis gas and bio-oil formation

机译:生物质构建块对热解气和生物油形成的协同作用

获取原文
获取原文并翻译 | 示例
       

摘要

Before biobased fuels can replace fossil fuels, several key issues must be addressed. Bio-oils derived through pyrolysis of lignocellulosic material have high acidity and viscosity, and poor energy density and stability. To address these issues, this paper examines the individual and combined behavior of lignocellulosic feedstock components to shed light on the potential to generate preferential biofuel properties through biomass mixing. Dry lignocellulosic biomass is mostly composed of cell wall polysaccharides (cellulose, hemicellulose, lignin), which vary widely in type and concentration across biomasses. This heterogeneity leads to increased unpredictability in biobased fuel formation during pyrolysis. Using derivative thermogravimetric (DTG) analysis, gas chromatography-mass spectroscopy, and residual gas analysis, this work explores the synergistic interactions of lignocellulosic biomass components during pyrolysis to manipulate bio-oil and gas product composition based on desired compound classes. Cellulose, xylose, xylan, and lignin were blended at different ratios to determine the extent of synergistic effects during pyrolysis. For each mixture, an 'expected' outcome was developed by summing the individual behavior (e.g. mass loss rate, H-2 gas evolution, etc.) of the individual components based on mass fraction present. Mixtures containing lignin and/or xylan yield peak DTG mass loss rates at lower temperatures than predicted with corresponding reductions in biochar yield suggesting synergistic interactions that promote devolatilization. By itself, lignin produces large amounts of hydrogen gas, and when mixed with other biomasses promotes dehydrogenation. Lignin increases CO2 formation, resulting in lower oxygen concentrations in the bio-oil and biochar. While suppressing bio-oil generation, the presence of lignin - even at low concentrations - increases the number of phenol compounds produced, while decreasing the yield of furans. The synergistic interactions between different polysaccharides could be exploited depending on the desired biorefinery products - allowing for targeted selection of lignocellulosic biomass mixes to fine-tune resulting fuels.
机译:在Biobased Fuels可以取代化石燃料之前,必须解决几个关键问题。通过木质纤维素材料热解来源的生物油具有高酸度和粘度,能量密度差和稳定性。为了解决这些问题,本文研究了木质纤维素原料成分的个体和综合行为,通过生物质混合产生优先生物燃料特性的潜力。干燥木质纤维素生物量主要由细胞壁多糖(纤维素,半纤维素,木质素)组成,其在体积的类型和浓度范围内各不等。这种异质性导致热解期间对生物燃料形成的不可预测性增加。使用衍生热重量分析(DTG)分析,气相色谱 - 质谱和残留气体分析,这项工作探讨了木质纤维素生物质组分在热解期间的协同相互作用,以操纵基于所需的化合物类的生物油和天然气产品组合物。纤维素,木糖,木聚糖和木质素以不同的比例混合,以确定热解期间的协同作用程度。对于每种混合物,通过基于存在的质量分数求和各个组分的个体行为(例如,质量损失率,H-2气体进化等)来开发“预期”结果。含有木质素和/或木聚糖的混合物在较低温度下达到峰值DTG质量损失率,而不是在Biochar产量的相应减少方面的降低,这表明协同互动促进脱挥发化。本身,木质素产生大量的氢气,并且与其他生物量混合时促进脱氢。木质素增加二氧化碳形成,导致生物油和生物炭中的氧浓度较低。在抑制生物油产生的同时,即使在低浓度下也存在木质素的存在 - 增加产生的酚化合物的数量,同时降低呋喃的产率。不同多糖之间的协同相互作用可以根据所需的生物颗粒产品进行利用 - 允许靶向选择木质纤维素生物质混合物与微调所产生的燃料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号