首页> 外文期刊>Journal of Analytical & Applied Pyrolysis >Mechanism of glucose conversion in supercritical water by DFT study
【24h】

Mechanism of glucose conversion in supercritical water by DFT study

机译:DFT法研究超临界水中葡萄糖的转化机理

获取原文
获取原文并翻译 | 示例
       

摘要

Using density function theory (OFF) simulations with B3LYP/AGU-cc-pVDZ level of theory, six chemical reaction pathways of glucose decomposition in supercritical water were proposed to explore the formation mechanism of some main outcomes (levoglucosan, 5-hydroxymethylfurfural, hydroxylacetaldehyde, erythrose, glyceraldehyde and fructose). In addition, seven potential dehydration ways in glucose were investigated with and without the assistance of water molecule. All dehydration reactions are accelerated when water molecules take part in the reaction, because it can effectively lower the energy barrier of dehydration reaction. In supercritical water surrounding with assistant of water molecule, pathways 3 and 4 are preferred routes of glucose conversion to hydroxylacetaldehyde and erythrose with the lowest energy barrier of 127 kJ/mol. While a higher energy barrier (163 kJ/mol) is required to form glyceraldehyde and fructose in pathways 5 and 6. Levoglucosan and 5-hydroxymethylfurfural are hard to generate during this chemical processes because of their higher energy barrier without water participating in. It seems like that water molecule acts as a magic catalyst that can transfer hydrogen atom in dehydrations, keto-enol tautomerization and structure rearrangement, which reducing the distance of hydrogen atom moving, result in reducing these reactions energy barriers dramatically. The computational results open a window to produce hydroxylacetaldehyde and erythrose in theory. Moreover, it sheds some light on the various proportions of different products in conversion of glucose in supercritical water, as well as suggesting concrete reaction pathways to form these main products, contributing to the elaboration of the mechanism of glucose conversion and cellulose decomposition from a molecule level. (C) 2016 Elsevier B.V. All rights reserved.
机译:利用B3LYP / AGU-cc-pVDZ水平的密度泛函理论(OFF)模拟,提出了超临界水中葡萄糖分解的六个化学反应途径,以探讨一些主要结果的形成机理(左旋葡聚糖,5-羟甲基糠醛,羟乙醛,赤藓糖,甘油醛和果糖)。此外,研究了在有或没有水分子帮助下葡萄糖中七种潜在的脱水方式。当水分子参与反应时,所有的脱水反应都会加速,因为它可以有效降低脱水反应的能垒。在水分子辅助下的超临界水中,途径3和4是葡萄糖转化为羟乙醛和赤藓糖的最佳途径,其最低能垒为127 kJ / mol。虽然在途径5和途径6中需要较高的能垒(163 kJ / mol)才能形成甘油醛和果糖。由于在没有水参与的情况下它们具有较高的能垒,因此在该化学过程中难以生成左旋葡聚糖和5-羟甲基糠醛。就像水分子充当魔术催化剂一样,它可以在脱水,酮-烯醇互变异构和结构重排中转移氢原子,从而减少了氢原子移动的距离,从而大大减少了这些反应的能垒。计算结果为理论上产生羟基乙醛和赤藓糖打开了一个窗口。此外,它揭示了超临界水中葡萄糖转化中不同产物的不同比例,并提出了形成这些主要产物的具体反应途径,有助于阐明葡萄糖转化和纤维素从分子中分解的机理。水平。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Journal of Analytical & Applied Pyrolysis》 |2016年第5期|199-207|共9页
  • 作者

    Zhang Yayun; Liu Chao; Chen Xi;

  • 作者单位

    Chongqing Univ, Coll Power Engn, Minist Educ, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400030, Peoples R China|Columbia Univ, Dept Earth & Environm Engn, Columbia Nanomech Res Ctr, New York, NY 10027 USA;

    Chongqing Univ, Coll Power Engn, Minist Educ, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400030, Peoples R China;

    Xi An Jiao Tong Univ, Sch Aerosp, SV Lab, ICAM, Xian 710049, Peoples R China|Columbia Univ, Dept Earth & Environm Engn, Columbia Nanomech Res Ctr, New York, NY 10027 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Glucose conversion; Supercritical water; Density function theory (DFT);

    机译:葡萄糖转化超临界水密度泛函理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号