首页> 外文期刊>Journal of the American Chemical Society >Dehydrogenation of Saturated CC and BN Bonds at Cationic N-Heterocyclic Carbene Stabilized M(III) Centers (M = Rh, Ir)
【24h】

Dehydrogenation of Saturated CC and BN Bonds at Cationic N-Heterocyclic Carbene Stabilized M(III) Centers (M = Rh, Ir)

机译:阳离子N杂环碳原子稳定的M(III)中心处饱和CC和BN键的脱氢(M = Rh,Ir)

获取原文
获取原文并翻译 | 示例
           

摘要

Chloride abstraction from the group 9 metal bis(N-heterocyclic carbene) complexes M(NHC)2(H)2Cl [M = Rh, Ir; NHC = IPr = N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene or IMes = N,N′-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene] leads to the formation of highly reactive cationic species capable of the dehydrogenation of saturated CC and BN linkages. Thus, the reaction of Ir(IPr)2(H)2Cl (1) with Na[BArf4] in fluorobenzene generates [Ir(IPr)2(H)2]+[BArf4]− (4) in which the iridium center is stabilized by a pair of agostic interactions utilizing the methyl groups of the isopropyl substituents. After a prolonged reaction period C−H activation occurs, ultimately leading to the dehydrogenation of one of the carbene iPr substituents and the formation of [Ir(IPr)(IPr′′)(H)2]+[BArf4]− (5), featuring the mixed NHC/alkene donor IPr′′ ligand. By contrast, the related IMes complexes M(IMes)2(H)2Cl (M = Rh, Ir), which feature carbene substituents lacking β-hydrogens, react with Na[BArf4] in fluorobenzene to give rare examples of NaCl inclusion compounds, viz., [M(IMes)2(H)2Cl(Na)]+[BArf4]− (M = Rh, 6; M = Ir, 7). Intercalation of the sodium cation between the mesityl aromatic rings of the two NHC donors has been demonstrated by crystallographic studies of 7. Synthetically, 6 and 7 represent convenient yet highly reactive sources of the putative 14-electron [M(NHC)2(H)2]+ cations, readily eliminating NaCl in the presence of potential donors. Thus 7 can be employed in the synthesis of the dinitrogen complexes [Ir(IMes)2(N2)2]+[BArf4]− (8a) and [Ir(IMes)2(N2)THF]+[BArf4]− (8b) (albeit with additional loss of H2) by stirring in toluene under a dinitrogen atmosphere and recrystallization from the appropriate solvent system. The interactions of 6 and 7 with primary, secondary, and tertiary amineboranes have also been investigated. Although reaction with the latter class of reagent simply leads to coordination of the amineborane at the metal center via two M−H−B bridges {and formation, for example, of the 18-electron species [M(IMes)2(H)2(μ-H)2B(H)·NMe3]+[BArf4]− (M = Rh, 9; M = Ir, 10)}, the corresponding reactions with systems containing N−H bonds proceed via dehydrogenation of the BN moiety to give complexes containing unsaturated aminoborane ligands. Thus, for example, 6 catalyzes the dehydrogenation of R2NH·BH3 (R = iPr, Cy) in fluorobenzene solution (100% conversion over 6 h at 2 mol % loading) to give R2NBH2; the organometallic complex isolated at the end of the catalytic run in each case is shown to be [Rh(IMes)2(H)2(μ-H)2BNR2]+[BArf4]− (R = iPr, 11; R = Cy, 12). In contrast to isoelectronic alkene donors, the aminoborane ligand in these complexes (and in the corresponding iridium compounds 13 and 14) can be shown by crystallographic methods to bind in end-on fashion via a bis(σ-borane) motif. Similar dehydrogenation chemistry is applicable to the primary amineborane tBuNH2·BH3, although in this case the rate of rhodium-catalyzed dehydrogenation is markedly slower. This enables the amineborane complex [Rh(IMes)2(H)2(μ-H)2B(H)·NH2tBu]+[BArf4]− (15) to be isolated at short reaction times (ca. 6 h) and the corresponding (dehydrogenated) aminoborane system [Rh(IMes)2(H)2(μ-H)2BNHtBu]+[BArf4]− (16) to be isolated after an extended period (ca. 48 h). As far as further reactivity is concerned, aminoborane systems such as 14 show themselves to be amenable to further dehydrogenation chemistry in the presence of tert-butylethylene leading ultimately to the dehydrogenation of the boron-containing ligand and to the formation of a directly Ir−B bonded system described by limiting boryl (Ir−B) and borylene (Ir═B) forms.
机译:从第9组金属双(N-杂环卡宾)配合物M(NHC) 2 (H) 2 Cl中提取氯化物[M = Rh,Ir; NHC = IPr = N,N'-双(2,6-二异丙基苯基)咪唑-2-亚基或IMes = N,N'-双(2,4,6-三甲基苯基)咪唑-2-亚基]形成能够使饱和CC和BN键脱氢的高反应性阳离子物质。因此,Ir(IPr) 2 (H) 2 Cl(1)与Na [BAr f 4 ]在氟苯中生成[Ir(IPr) 2 (H) 2 ] + [BAr f < sub> 4 ] -(4),其中铱中心通过利用异丙基取代基的甲基进行的一对不良相互作用而稳定。在延长的反应时间后,发生C–H活化,最终导致卡宾 i Pr取代基之一脱氢并形成[Ir(IPr)(IPr'')(H) 2 ] + [BAr f 4 ] -(5),具有混合NHC /烯烃供体IPr''配体。相比之下,相关的IMes配合物M(IMes) 2 (H) 2 Cl(M = Rh,Ir),其特征是缺少β-氢的卡宾取代基与氟苯中的Na [BAr f 4 ]给出了NaCl夹杂物的罕见例子,即[M(IMes) 2 (H) 2 Cl(Na)] + [BAr f 4 ] -(M = Rh,6; M = Ir,7)。已通过7的晶体学研究证明了两个NHC供体的均三芳族芳环之间的钠阳离子嵌入。综合地,6和7表示推定的14电子[M(NHC)2 (H) 2 ] + 阳离子,可以在潜在供体存在的情况下轻松消除NaCl。因此,可以使用7合成二氮配合物[Ir(IMes) 2 (N 2 2 ] + < / sup> [BAr f 4 ] -(8a)和[Ir(IMes) 2 (N < sub> 2 )THF]] + [BAr f 4 ] -(8b)(尽管通过在氮气气氛下在甲苯中搅拌并在适当的溶剂系统中重结晶,可额外损失H 2 )。还研究了6和7与伯,仲和叔胺硼烷的相互作用。尽管与后一类试剂的反应仅导致金属中心的胺硼烷通过两个MH-B桥进行配位(例如,形成18电子物种[M(IMes) 2 < / sub>(H) 2 (μ-H) 2 B(H)·NMe 3 ] + [BAr f 4 ] -(M = Rh,9; M = Ir,10)},与包含N-的系统的相应反应H键通过BN部分的脱氢进行,得到含有不饱和氨基硼烷配体的配合物。因此,例如6在氟苯溶液(100)中催化R 2 NH·BH 3 (R = i Pr,Cy)脱氢2 mol%负载下历经6个小时的转化百分比),得到R 2 NBH 2 ;在每种情况下,催化运行结束时分离出的有机金属配合物显示为[Rh(IMes) 2 (H) 2 (μ-H) 2 BNR 2 ] + [BAr f 4 ] - (R = i Pr,11; R = Cy,12)。与等电子烯烃供体相反,这些配合物(以及相应的铱化合物13和14)中的氨基硼烷配体可以通过晶体学方法显示为通过双(σ-硼烷)基序以末端方式结合。类似的脱氢化学方法也适用于伯胺硼烷 t BuNH 2 ·BH 3 ,尽管在​​这种情况下铑催化的脱氢速率明显慢点。这使胺硼烷络合物[Rh(IMes) 2 (H) 2 (μ-H) 2 B(H)·NH 2 t Bu] + [BAr f 4 ] -(15)在短反应时间(约6小时)和相应的(脱氢的)氨基硼烷体系[Rh(IMes) 2 (H) 2 ( μ-H) 2 BNH t Bu] + [BAr f 4 ]] -(16)在较长时间(约48小时)后将被隔离。就进一步的反应性而言,氨基硼烷体系(例如14)显示出它们在叔丁基乙烯存在下适合于进一步的脱氢化学反应,最终导致含硼配体的脱氢并直接形成Ir-B通过限制硼基(Ir-B)和亚硼基(Ir═B)形式描述的键合体系。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第30期|p.10578-10591|共14页
  • 作者单位

    Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号